Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
y=3x-21
Step-by-step explanation:
General outline
- Find equation for line AB
- Find equation for perpendicular line BC
Step 1. Find equation for line AB
Given points A(2,5) and B(8,3), line AB must contain them.
To calculate the slope, [tex]m_{\text{AB}}[/tex], of line AB, use the slope formula:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m_{\text{AB}}=\dfrac{(3)-(5)}{(8)-(2)}[/tex]
[tex]m_{\text{AB}}=\dfrac{-2}{6}[/tex]
[tex]m_{\text{AB}}=-\frac{1}{3}[/tex]
Since the slope isn't undefined, line AB must cross the y-axis somewhere. To find the y-intercept, build and equation in slope-intercept form:
[tex]y=m_{\text{AB}}x+b_{\text{AB}}[/tex]
[tex]y=\left(-\frac{1}{3} \right) x+b_{\text{AB}}[/tex]
Substituting values for a known point (point A) on line AB...
[tex](5)=\left(-\frac{1}{3} \right) (2)+b_{\text{AB}}[/tex]
[tex]5=-\frac{2}{3} +b_{\text{AB}}[/tex]
[tex](5)+\frac{2}{3} =(-\frac{2}{3} +b_{\text{AB}})+\frac{2}{3}[/tex]
Finding a common denominator...
[tex]\frac{3}{3}*5+\frac{2}{3} =b_{\text{AB}}[/tex]
[tex]\frac{15}{3}+\frac{2}{3} =b_{\text{AB}}[/tex]
[tex]\frac{17}{3}=b_{\text{AB}}[/tex]
So, the equation for line AB is [tex]y=-\frac{1}{3} x +\frac{17}{3}[/tex]
Step 2. Find equation for line BC
Since line AB and line BC form a right angle, they are perpendicular. Perpendicular lines have slopes that are opposite (opposite sign) reciprocals (fraction flipped upside-down) of each other. Stated another way, the slopes multiply to make negative 1.
[tex]m_{\text{AB}}*m_{\text{BC}}=-1[/tex]
[tex]\left( -\frac{1}{3} \right) *m_{\text{BC}}=-1[/tex]
[tex]-3*\left( -\frac{1}{3} *m_{\text{BC}} \right) =-3*(-1)[/tex]
[tex]m_{\text{BC}} =3[/tex]
Since the slope isn't undefined, line BC must also cross the y-axis somewhere. To find the y-intercept, build and equation in slope-intercept form:
[tex]y=m_{\text{BC}}x+b_{\text{BC}}[/tex]
[tex]y=(3) x+b_{\text{BC}}[/tex]
Substituting values for a known point (point B) on line BC...
[tex](3)=3 * (8)+b_{\text{BC}}[/tex]
[tex]3=24+b_{\text{BC}}[/tex]
[tex](3)-24=(24+b_{\text{BC}})-24[/tex]
[tex]-21=b_{\text{BC}}[/tex]
So, the equation for line BC is [tex]y=3 x -21[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.