Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
x = (√10 -3)/2 and (-√10 -3)/2
Step-by-step explanation:
(2x+3)^2 = 10
To solve the equation, take the square root of each side
sqrt((2x+3)^2) = ±√10
2x+3 = ±√10
Subtract 3 from each side
2x+3-3 = ±√10 -3
2x = ±√10 -3
Divide each side by 2
2x/2 = (±√10 -3)/2
x = (±√10 -3)/2
There are two solutions
x = (√10 -3)/2
and (-√10 -3)/2
Answer:
[tex]\large {\textsf{A and D}}\ \implies \sf \sf \bold{x_1}=\dfrac{-\sqrt{10}-3}{2},\ \bold{x_2}=\dfrac{\sqrt{10}-3}{2}[/tex]
Step-by-step explanation:
Given: (2x + 3)² = 10
In order to find the solutions to the given equation, we can take the (square) roots of the equation to find the zeros, which are also known as the x-intercepts. This is where the zeros intersect the x-axis.
Note: when taking the square roots of a quadratic equation, remember to use both the positive and negative roots.
Step 1: Square both sides of the equation.
[tex]\sf \sqrt{(2x + 3)^2} = \sqrt{10}\\\\\Rightarrow 2x+3=\pm\sqrt{10}[/tex]
Step 2: Separate into possible cases.
[tex]\sf x_1 \implies 2x+3=-\sqrt{10}\\\\x_2 \implies 2x+3=\sqrt{10}[/tex]
Step 3: Solve for x in both cases.
[tex]\sf \bold{x_1} \implies 2x+3=-\sqrt{10}\ \ \textsf{[ Subtract 3 from both sides. ]}\\\\\Rightarrow 2x+3-3=-\sqrt{10}-3\\\\\Rightarrow 2x=-\sqrt{10}-3\ \ \textsf{[ Divide both sides by 2. ]}\\\\\Rightarrow \dfrac{2x}{2}=\dfrac{-\sqrt{10}-3}{2}\\\\\Rightarrow x_1=\dfrac{-\sqrt{10}-3}{2}\\\\[/tex]
[tex]\sf \bold{x_2}\implies 2x+3=\sqrt{10}\ \ \textsf{[ Subtract 3 from both sides. ]}\\\\\Rightarrow 2x+3-3=\sqrt{10}-3\\\\\Rightarrow 2x=\sqrt{10}-3\ \ \textsf{[ Divide both sides by 2. ]}\\\\\Rightarrow \dfrac{2x}{2}=\dfrac{\sqrt{10}-3}{2}\\\\\Rightarrow x_2=\dfrac{\sqrt{10}-3}{2}[/tex]
Therefore, the solutions to this quadratic equation are: [tex]\sf \bold{x_1}=\dfrac{-\sqrt{10}-3}{2},\ \bold{x_2}=\dfrac{\sqrt{10}-3}{2}[/tex]
Learn more about quadratic equations here:
brainly.com/question/27031173
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.