Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
Approximately [tex]14\; {\rm N}[/tex].
Explanation:
By Coulomb's Law, the magnitude of the electrostatic force between two charges is proportional to the product of the magnitudes of the two charges.
For example, consider charges of magnitude [tex]q_{1}[/tex] and [tex]q_{2}[/tex] that are apart from one another by a distance of [tex]r[/tex] in between. Let [tex]k[/tex] denote Coulomb's constant. By Coulomb's Law, the magnitude of electrostatic force between the two charges would be:
[tex]\displaystyle F = \frac{k\, q_{1}\, q_{2}}{r^{2}}[/tex].
In this question, the product of the magnitude of the two charges was originally [tex]3\; {\rm \mu C} \times 7\; {\rm \mu C} = 21\; {\rm (\mu C)^{2}}[/tex]. After [tex](-1\; {\rm \mu C})[/tex] is added to each charge, product of the magnitude of the two charges would become [tex](3 - 1)\; {\rm \mu C} \times (7 - 1)\; {\rm \mu C} = 12\; {\rm (\mu C)^{2}}[/tex].
Thus, the product of the magnitude of the two charges has been scaled to [tex]12\; {\rm \mu C}[/tex] from [tex]21\; {\rm \mu C}[/tex] . The magnitude of the electrostatic force between the two charges would be scaled from [tex]25\; {\rm N}[/tex] to [tex]25\; {\rm N} \times (12 / 21) \approx 14\; {\rm N}[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.