Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

find the area of the shaded portion in each of the following​

Find The Area Of The Shaded Portion In Each Of The Following class=

Sagot :

Answer:

30.5 cm^2

Step-by-step explanation:

General outline

  1. Find the area of the full circle
  2. Find the area of the rectangle
  3. Find the difference (full circle area - rectangle area)

Step 1.  Find the area of the full circle

Recall the formula for the area of a circle: [tex]A_{circle}=\pi r^2[/tex] where [tex]\pi \approx 3.14[/tex], and "r" is the radius of the circle (distance from center to any point on the edge).

From the diagram, the radius is 5cm.

[tex]A_{circle}=\pi r^2[/tex]

[tex]A_{circle}=(3.14)(5[cm])^2[/tex]

[tex]A_{circle}=78.5[cm^2][/tex]

Step 2.  Find the area of the rectangle

Recall the formula for the area of a rectangle: [tex]A_{rectangle}=bh[/tex] where "b" is the base of the rectangle (length of bottom or length of top), "h" is the height of the rectangle (distance from bottom to top).

From the diagram, the base is 8cm, and the height is 6cm.

[tex]A_{rectangle}=bh[/tex]

[tex]A_{rectangle}=(8[cm])(6[cm])[/tex]

[tex]A_{rectangle}=48[cm^2][/tex]

Step 3.  Find the difference (full circle area - rectangle area)

Having found the areas for each of the first parts, we can find the difference to find the shaded area:

[tex]A_{shaded}=A_{circle}-A_{rectangle}[/tex]

[tex]A_{shaded}=(78.5[cm^2])-(48[cm^2])[/tex]

[tex]A_{shaded}=30.5[cm^2][/tex]