Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
337.5m
Explanation:
Kinematics
Under constant acceleration, the kinematic equation holds:
[tex]s=\frac{1}{2}at^2+v_ot+s_o[/tex], where "s" is the position at time "t", "a" is the constant acceleration, "[tex]v_o[/tex]" is the initial velocity, and [tex]s_o[/tex] is the initial position.
Defining Displacement
Displacement is the difference in positions: [tex]s-s_o[/tex] or [tex]\Delta s[/tex]
[tex]s=\frac{1}{2}at^2+v_ot+s_o[/tex]
[tex]s-s_o=\frac{1}{2}at^2+v_ot[/tex]
[tex]\Delta s=\frac{1}{2}at^2+v_ot[/tex]
Using known information
Given that the initial velocity is zero ("skier stands at rest"), and zero times anything is zero, and zero plus anything remains unchanged, the equation simplifies further to the following:
[tex]\Delta s=\frac{1}{2}at^2+v_ot[/tex]
[tex]\Delta s=\frac{1}{2}at^2+(0)*t[/tex]
[tex]\Delta s=\frac{1}{2}at^2+0[/tex]
[tex]\Delta s=\frac{1}{2}at^2[/tex]
So, to find the displacement after 15 seconds, with a constant acceleration of 3.0 m/s², substitute the known values, and simplify:
[tex]\Delta s=\frac{1}{2}at^2[/tex]
[tex]\Delta s=\frac{1}{2}(3.0[\frac{m}{s^2}])(15.0[s])^2[/tex]
[tex]\Delta s=337.5[m][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.