Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
337.5m
Explanation:
Kinematics
Under constant acceleration, the kinematic equation holds:
[tex]s=\frac{1}{2}at^2+v_ot+s_o[/tex], where "s" is the position at time "t", "a" is the constant acceleration, "[tex]v_o[/tex]" is the initial velocity, and [tex]s_o[/tex] is the initial position.
Defining Displacement
Displacement is the difference in positions: [tex]s-s_o[/tex] or [tex]\Delta s[/tex]
[tex]s=\frac{1}{2}at^2+v_ot+s_o[/tex]
[tex]s-s_o=\frac{1}{2}at^2+v_ot[/tex]
[tex]\Delta s=\frac{1}{2}at^2+v_ot[/tex]
Using known information
Given that the initial velocity is zero ("skier stands at rest"), and zero times anything is zero, and zero plus anything remains unchanged, the equation simplifies further to the following:
[tex]\Delta s=\frac{1}{2}at^2+v_ot[/tex]
[tex]\Delta s=\frac{1}{2}at^2+(0)*t[/tex]
[tex]\Delta s=\frac{1}{2}at^2+0[/tex]
[tex]\Delta s=\frac{1}{2}at^2[/tex]
So, to find the displacement after 15 seconds, with a constant acceleration of 3.0 m/s², substitute the known values, and simplify:
[tex]\Delta s=\frac{1}{2}at^2[/tex]
[tex]\Delta s=\frac{1}{2}(3.0[\frac{m}{s^2}])(15.0[s])^2[/tex]
[tex]\Delta s=337.5[m][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.