Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
(1, 1)
Step-by-step explanation:
Given vertices of the parallelogram:
- H = (-1, 4)
- J = (3, 3)
- K = (3, -2)
- L = (-1, -1)
Therefore the parallel sides are:
[tex]\sf \overline{HJ} \parallel \overline{LK}\:\: \textsf{ and }\:\: \overline{LK} \parallel \overline{HL}[/tex]
Therefore, the diagonals of the parallelogram are:
[tex]\sf \overline{LJ} \:\: \textsf{ and }\:\:\overline{HK}[/tex]
To find the coordinates of the intersection of the diagonals, either:
- draw a diagram (see attached) and determine the point of intersection of the diagonals from the diagram, or
- determine the midpoint of either diagonal (as the diagonals of a parallelogram bisect each other, i.e. divide into 2 equal parts).
Midpoint between two points
[tex]\textsf{Midpoint}=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)\quad \textsf{where}\:(x_1,y_1)\:\textsf{and}\:(x_2,y_2)\:\textsf{are the endpoints}}\right)[/tex]
To find the midpoint of diagonal LJ, define the endpoints:
- [tex](x_1,y_1)=L=(-1, -1)[/tex]
- [tex](x_2,y_2)=J=(3,3)[/tex]
Substitute the defined endpoints into the formula and solve:
[tex]\begin{aligned} \implies \textsf{Midpoint of LJ} & =\left(\dfrac{3-1}{2},\dfrac{3-1}{2}\right)\\ & =\left(\dfrac{2}{2},\dfrac{2}{2}\right)\\ & =\left(1,1\right) \end{aligned}[/tex]
Therefore, the coordinates off the intersection of the diagonals of parallelogram HJKL are (1, 1).
Learn more about midpoints here:
https://brainly.com/question/27962681

Check the order
- HJKL
Means H,J and K,L are adjacent coordinates
Hence HK and JL are diagonals
We know diagonals of a parallelogram bisect each other so midpoint of any diagonal would be the intersection point
Midpoint of HK
- (x1+x2/2,y1+y2/2)
- (-1+3/2,4-2/2)
- (2/2,2/2)
- (1,1)
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.