Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex]\boxed {\frac{dy}{dx}= 2x}[/tex]
Step-by-step explanation:
Solving :
⇒ log y = log (x²)
⇒ log y = 2 log x
⇒ [tex]\mathsf {\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \times 2}[/tex]
⇒ [tex]\mathsf {\frac{dy}{dx}= 2x}[/tex]
Answer:
y’ = 2x
Step-by-step explanation:
Let y = f (x), take the natural logarithm of both sides ln (y) = ln (f (x))
ln (y) = ln (x²)
Differentiate the expression using the chain rule, keeping in mind that y is a function of x.
Differentiate the left hand side ln (y) using the chain rule.
y’/y = 2 In (x)
Differentiate the right hand side.
Differentiate 2 ln (x)
y’/y = d/dx = [ 2 In (x) ]
Since 2 is constant with respect to xx, the derivative of 2 ln (x) with respect to x is 2 d/dx [ln (x)]
y’/y = 2 d/dx [In (x)]
The derivative of ln (x) with respect to x is 1/x.
y’/y = 2 1/x
Combine 2 and 1/x
y’/y = 2/x
Isolate y' and substitute the original function for y in the right hand side.
y’ = [tex]\frac{2}{x}[/tex] x²
Factor x out of x².
y’ = [tex]\frac{2}{x}[/tex] (x * x)
Cancel the common factor.
y’ = [tex]\frac{2}{x}[/tex] (x * x) (The x that is under 2 and the other x that I have underlined are the ones that cancel out)
Rewrite the expression.
y’ = 2x
So therefore, the answer would be 2x.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.