At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Maximum total 8 points in which the sides of the quadrilateral can intersect the sides of the hexagon.
A regular hexagon is a closed shape polygon which has six equal sides and six equal angles. In case of any regular polygon, all its sides and angles are equal.
A convex quadrilateral is a four-sided polygon that has interior angles that measure less than 180 degrees each. The diagonals are contained entirely inside of these quadrilaterals
Take a look at just one side of the quadrilateral—a straight line. Since we are told that no side of the quadrilateral lies on the same line as a side of the hexagon, the maximum number of times a side of the quadrilateral could intersect the hexagon is 2. We can use a ruler to test this on the image of the hexagon. There is no way to pass a straight line through the hexagon and have it intersect the shape more than 2 times. Therefore, the maximum number of points at which the quadrilateral could intersect the hexagon would be
at 2 points per side, at 2 × 4 = 8 points.
Hence, Maximum total 8 points in which the sides of the quadrilateral can intersect the sides of the hexagon.
Learn more about convex quadrilaterals here :
https://brainly.com/question/15115269
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.