At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Solving the given equations we get,
- Solutions of quadratic equation [tex]9x^2-25=-12-10x[/tex] are x=0.77 and -1.88
- Solutions of quadratic equation [tex]4n^2-1=12n+3n^2+11[/tex] are n=12.93 and -0.93
If the quadratic equation is [tex]ax^2+bx+c=0[/tex] then the solutions of this are given by,
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Here in the problem given that,
The first quadratic equation is [tex]9x^2-25=-12-10x[/tex]
Converting it into standard form of quadratic equation we get,
[tex]9x^2-25=-12-10x\\9x^2-25+12+10x=0\\9x^2+10x-13=0[/tex]
So here a=9,b=10,c=-13
The solutions of the equation is given by,
[tex]x=\frac{-10\pm\sqrt{10^2-4\times9\times(-13)}}{2\times9}=\frac{-10\pm\sqrt{100+468}}{18}\approx\frac{-10\pm23.83}{18}[/tex]
So either,
[tex]x=\frac{-10+23.83}{18}=\frac{13.83}{18}\approx0.77[/tex]
Or,
[tex]x=\frac{-10-23.83}{18}\approx-1.88[/tex]
So the solutions are given by x=0.77 and -1.88
Second quadratic equation is [tex]4n^2-1=12n+3n^2+11[/tex]
Converting the equation in its standard form we get,
[tex]4n^2-1=12n+3n^2+11\\4n^2-1-12n-3n^2-11=0\\n^2-12n-12=0[/tex]
so here a=1,b=-12,c=-12
Solutions are given by,
[tex]n=\frac{-(-12)\pm\sqrt{(-12)^2-4\times1\times(-12)}}{2\times1}=\frac{12\pm\sqrt{144+48}}{2}\approx\frac{12\pm13.86}{2}[/tex]
So either
[tex]n=\frac{12+13.86}{2}=12.93[/tex]
Or,
[tex]n=\frac{12-13.86}{2}=-0.93[/tex]
Solutions are given by n = 12.93 and -0.93
Hence the solutions are x=0.77 and -1.88 for first equation and n=12.93 and -0.93 for second equation.
Learn more about Quadratic Equation here -
https://brainly.com/question/1214333
#SPJ10
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.