At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The dimensions of the garden with the largest area she can enclose are given by 24*14 square yards.
The area (A) of the rectangle with length L and Width W is given by,
A=L*W
The maximum of [tex]y=ax^2+bx[/tex] occurs at x = -b/2a
Let the length and width of the garden be L and W respectively.
Now let my friend use cedar fencing for one width and cheaper metal fencing for rest sides.
Rate of cedar fencing is $17/yard
Then she has to pay for cedar fencing = 17W
rate of cheaper metal fencing is $7/yard
Then she has to pay for metal fencing = 7W+7*2L = 7W+14L
Then according to condition,
17W+7W+14L = 672
24W+14L = 672
12W+7L = 336
7L = 336-12W
L = (336-12W)/7
Then the area of the rectangular garden is given by,
A = L*W
[tex]A=\frac{336-12W}{7}\times W\\A=-\frac{12}{7}W^2+48W[/tex]
So here a = -12/7 and b = 48
Then maximum of W occurs at,
W = -48/(2*(-12/7)) = (48*7)/(2*12) = 336/24 = 14
Then maximum width = 14 yards
then length (L) = (336-12*14)/7 = 168/7 = 24 yards
Hence the dimensions with the leargest area she can enclose is given by = 24 * 14 square yards.
Learn more about Dimensions here -
https://brainly.com/question/8760279
#SPJ10
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.