Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The dimensions of the garden with the largest area she can enclose are given by 24*14 square yards.
The area (A) of the rectangle with length L and Width W is given by,
A=L*W
The maximum of [tex]y=ax^2+bx[/tex] occurs at x = -b/2a
Let the length and width of the garden be L and W respectively.
Now let my friend use cedar fencing for one width and cheaper metal fencing for rest sides.
Rate of cedar fencing is $17/yard
Then she has to pay for cedar fencing = 17W
rate of cheaper metal fencing is $7/yard
Then she has to pay for metal fencing = 7W+7*2L = 7W+14L
Then according to condition,
17W+7W+14L = 672
24W+14L = 672
12W+7L = 336
7L = 336-12W
L = (336-12W)/7
Then the area of the rectangular garden is given by,
A = L*W
[tex]A=\frac{336-12W}{7}\times W\\A=-\frac{12}{7}W^2+48W[/tex]
So here a = -12/7 and b = 48
Then maximum of W occurs at,
W = -48/(2*(-12/7)) = (48*7)/(2*12) = 336/24 = 14
Then maximum width = 14 yards
then length (L) = (336-12*14)/7 = 168/7 = 24 yards
Hence the dimensions with the leargest area she can enclose is given by = 24 * 14 square yards.
Learn more about Dimensions here -
https://brainly.com/question/8760279
#SPJ10
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.