Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the normal distribution, it is found that:
a) The pilot is at the 72th percentile.
b) 19.13% of pilots are unable to fly.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:
[tex]\mu = 72.6, \sigma = 2.7[/tex].
Item a:
The percentile is the p-value of Z when X = 74.2, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{74.2 - 72.6}{2.7}[/tex]
Z = 0.59
Z = 0.59 has a p-value of 0.7224.
72th percentile.
Item b:
The proportion that is able to fly is the p-value of Z when X = 78 subtracted by the p-value of Z when X = 70, hence:
X = 78:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{78 - 72.6}{2.7}[/tex]
Z = 2
Z = 2 has a p-value of 0.9772.
X = 70:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{70 - 72.6}{2.7}[/tex]
Z = -0.96
Z = -0.96 has a p-value of 0.1685.
0.9772 - 0.1685 = 0.8087 = 80.87%.
Hence the percentage that is unable to fly is:
100 - 80.87 = 19.13%.
More can be learned about the normal distribution at https://brainly.com/question/4079902
#SPJ1
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.