Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
Approximately [tex]122.625\; {\rm m}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex], the ball was launched from ground level, and that the drag on the ball is negligible.)
Explanation:
Let [tex]v_{0}[/tex] denote the velocity at which the ball was thrown upward.
If the drag (air friction) on the ball is negligible, the ball would land with a velocity of exactly [tex](-v_{0})[/tex]. The velocity of the ball would be changed from [tex]v[/tex] to [tex](-v_{0})\![/tex] (such that [tex]\Delta v = (-v_{0}) - v_{0} = (-2\, v_{0})[/tex]) within [tex]t = 10\; {\rm s}[/tex].
Also because the drag on the ball is negligible, the acceleration of the ball would be [tex]a = -g = -9.81\; {\rm m\cdot s^{-2}}[/tex]. Thus:
[tex]\Delta v = a\, t = 10\; {\rm s} \times (-9.81\; {\rm m\cdot s^{-2}}) = -98.1\; {\rm m\cdot s^{-1}}[/tex].
Since [tex]\Delta v = (-2\, v_{0})[/tex]:
[tex]-2\, v_{0} = \Delta v = -98.1\; {\rm m\cdot s^{-1}[/tex].
[tex]\begin{aligned}v_{0} &= \frac{-98.1\; {\rm m\cdot s^{-1}}}{-2}= 49.05\; {\rm m \cdot s^{-1}}\end{aligned}[/tex].
The ball reaches maximum height when its velocity is [tex]v_{1} = 0\; {\rm m\cdot s^{-1}}[/tex]. Apply the SUVAT equation [tex]x = ({v_{1}}^{2} - {v_{0}}^{2}) / (2\, a)[/tex] to find the displacement [tex]x[/tex] between the original position (ground level, where [tex]v_{0} = 49.05\; {\rm m\cdot s^{-1}}[/tex]) and the max-height position of the ball (where [tex]v_{1} = 0\; {\rm m\cdot s^{-1}}[/tex].)
[tex]\begin{aligned}x &= \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (49.05\; {\rm m\cdot s^{-1}})^{2}}{2 \times (-9.81\; {\rm m\cdot s^{-2}})} \\ &\approx 122.625\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.