Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
Approximately [tex]122.625\; {\rm m}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex], the ball was launched from ground level, and that the drag on the ball is negligible.)
Explanation:
Let [tex]v_{0}[/tex] denote the velocity at which the ball was thrown upward.
If the drag (air friction) on the ball is negligible, the ball would land with a velocity of exactly [tex](-v_{0})[/tex]. The velocity of the ball would be changed from [tex]v[/tex] to [tex](-v_{0})\![/tex] (such that [tex]\Delta v = (-v_{0}) - v_{0} = (-2\, v_{0})[/tex]) within [tex]t = 10\; {\rm s}[/tex].
Also because the drag on the ball is negligible, the acceleration of the ball would be [tex]a = -g = -9.81\; {\rm m\cdot s^{-2}}[/tex]. Thus:
[tex]\Delta v = a\, t = 10\; {\rm s} \times (-9.81\; {\rm m\cdot s^{-2}}) = -98.1\; {\rm m\cdot s^{-1}}[/tex].
Since [tex]\Delta v = (-2\, v_{0})[/tex]:
[tex]-2\, v_{0} = \Delta v = -98.1\; {\rm m\cdot s^{-1}[/tex].
[tex]\begin{aligned}v_{0} &= \frac{-98.1\; {\rm m\cdot s^{-1}}}{-2}= 49.05\; {\rm m \cdot s^{-1}}\end{aligned}[/tex].
The ball reaches maximum height when its velocity is [tex]v_{1} = 0\; {\rm m\cdot s^{-1}}[/tex]. Apply the SUVAT equation [tex]x = ({v_{1}}^{2} - {v_{0}}^{2}) / (2\, a)[/tex] to find the displacement [tex]x[/tex] between the original position (ground level, where [tex]v_{0} = 49.05\; {\rm m\cdot s^{-1}}[/tex]) and the max-height position of the ball (where [tex]v_{1} = 0\; {\rm m\cdot s^{-1}}[/tex].)
[tex]\begin{aligned}x &= \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (49.05\; {\rm m\cdot s^{-1}})^{2}}{2 \times (-9.81\; {\rm m\cdot s^{-2}})} \\ &\approx 122.625\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.