Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
System A has 2 real solutions, System B has 0 real solutions and System C has 1 real solution.
Given a system of equations for A is x²+y²=17 and y=-(1÷2)x, a system of equations for B is y=x²-7x10 and y=-6x+5 and a system of equations for C is y=-2x²+9 and 8x-y=-17.
For system A,
The two systems of equations are
x²+y²=17 ......(1)
y=-1÷2x ......(2)
Substitute the value of equation (2) into equation (1) as
x²+(-x÷2)²=17
x²+(x²÷4)=17
Simplify the above equation by taking L.C.M. as
(4x²+x²)÷4=17
5x²=68
x²=68÷5
x=±3.688
Find the value of y by substituting the value of x in equation (2).
When x=3.688 then y is
y=-(1÷2)×3.688
y=-1.844
And When x=-3.688 then y is
y=-(1÷2)×(-3.688)
y=1.844
Thus, the points where the equations of system A intersect each other is (3.688,-1.844) and (-3.688,1.844)
So, the system of equations of A has 2 real solutions.
For system B,
The two systems of equations are
y=x²-7x+10 ......(3)
y=-6x+5 ......(4)
Substitute the value of equation (4) into equation (3) as
-6x+5=x²-7x+10
x²-7x+10+6x-5=0
x²-x+5=0
Simplify the above quadratic equation using the discriminant rule,
x=(-b±√(b²-4ac))÷(2a)
Here, a=1, b=-1 and c=5
Substitute the values in the discriminant rule as
x=(1±√(1-4\times 5\times 1))÷2
x=(1±√(-19))÷2
x=(1±√(19)i)÷2
Here, the value of x goes into the complex.
So, the system of equations of B has 0 real solutions.
For system C,
The two systems of equations are
y=-2x²+9 ......(5)
8x-y=-17 ......(6)
Substitute the value of equation (6) into equation (5) as
8x-(-2x²+9)=-17
8x+2x²-9+17=0
2x²+8x+8=0
Simplify the above quadratic equation using factorization method as
2x²+4x+4x+8=0
2x(x+2)+4(x+2)=0
(2x+4)(x+2)=0
x=-2,-2
Find the value of y by substituting the value of x in equation (5).
When x=-2 then y is
y=-2(-2)²+9
y=-8+9
y=1
Thus, the point where the equations of system C intersect each other is (-2,1)
So, the system of equations of C has 1 real solutions.
Hence, the system of equations for A is x²+y²=17 and y=-(1÷2)x having 2 real solution, a system of equations for B is y=x²-7x10 and y=-6x+5 having 0 real solution and a system of equations for C is y=-2x²+9 and 8x-y=-17 having 1 real solution.
Learn about system of equations from here brainly.com/question/12962074
#SPJ4
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.