Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer: neither graph A nor graph B, because, even though both curves are above the horizontal axis, neither graph has an area of 1
Step-by-step explanation:
Areas under the graphs:
Graph A
[tex](1)(0.5)+(7-2)(0.2)=1.5\\\\[/tex]
Graph B
[tex]\frac{\pi}{2}(1^{2})=\frac{\pi}{2}[/tex]
As neither of these graphs have an area of 1, neither of them are density curves.
The statement - "neither graph A nor graph B, because, even though both curves are above the horizontal axis, neither graph has an area of 1" is true.
A few fundamental principles apply to density curves:
- A density curve's area beneath it represents probability.
- A density curve's area under it equals one.
- Base x height in a uniform density curve equals one.
- The likelihood that x = a will never occur.
- The likelihood that x < a is the same as that of x ≤ a.
Neither curve of Graph A nor of Graph B has the area under the curve summed up as 1, though the curve is above the horizontal axis.
Hence, because neither graph has an area of 1, even if both curves are above the horizontal axis, the statement "neither graph A nor graph B, because, even though both curves are above the horizontal axis, neither graph has an area of 1" is true.
Learn more about density curves here-
brainly.com/question/28001152
#SPJ10
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.