Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What is the inverse of function f?
f(x) = 64x3 - 1


Sagot :

Step-by-step explanation:

f(x) = y = 64x³ - 1

y + 1 = 64x³

(y + 1)/64 = x³

[tex]x = \sqrt[3]{(y + 1) \div 64} [/tex]

[tex]x = \sqrt[3]{y + 1} \div 4[/tex]

that is the actual inverse function to calculate the original x value for a given y value of the original function.

but to make it a "normal" function, we need to rename the variables (x to y, y to x) :

[tex]y = \sqrt[3]{x + 1} \div 4[/tex]

this is now f^-1(x)

but careful, don't get confused, if dealing together with the original function, this "x" is actually standing for the "y" of the original function ...