Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
If [tex]f(x)[/tex] has a removable discontinuity at [tex]x=a[/tex], then the limit
[tex]\displaystyle \lim_{x\to a} \frac{f(x)}{x-a}[/tex]
exists and is finite.
A non-removable discontinuity at [tex]x=b[/tex] would entail a non-finite limit,
[tex]\displaystyle \lim_{x\to b} \frac{f(x)}{x-b} = \pm\infty[/tex]
or the limit does not exist (which could be due to the limits from either side of [tex]x=b[/tex] not matching or existing).
For a rational function, we want
[tex]f(x) = \dfrac{p(x)}{q(x)}[/tex]
where [tex]p[/tex] and [tex]q[/tex] are polynomials in [tex]x[/tex]. To get a removable discontinuity at [tex]x=a[/tex], both [tex]p[/tex] and [tex]q[/tex] must be divisible by [tex]x-a[/tex], and the limit of their quotient after removing these factors still exists. That is,
[tex]\displaystyle \lim_{x\to a} f(x) = \lim_{x\to a} \frac{p(x)}{q(x)} = \lim_{x\to a} \frac{(x-a)p^*(x)}{(x-a)q^*(x)} = \lim_{x\to a} \frac{p^*(x)}{q^*(x)} = \frac{p^*(a)}{q^*(a)}[/tex]
On the flip side, we get a non-removable discontinuity [tex]x=b[/tex] if [tex]p[/tex] is not divisible by [tex]x-b[/tex], in which case
[tex]\displaystyle \lim_{x\to b} f(x) = \lim_{x\to b} \frac{p(x)}{q(x)} = \lim_{x\to b} \frac{p(x)}{(x-b)q^*(x)} = \frac{p(b)}{0\times q^*(b)}[/tex]
and this is undefined.
Suppose [tex]f(x)[/tex] has a non-removable discontinuity at [tex]x=-5[/tex] and a removable one at [tex]x=4[/tex]. Then one such function could be
[tex]f(x) = \dfrac{x-4}{(x-4)(x+5)} = \dfrac{x-4}{x^2+x-20}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.