At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using the normal distribution, it is found that there is a 0.0005 = 0.05% probability of getting more than 66 heads.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- The binomial distribution is the probability of x successes on n trials, with p probability of a success on each trial. It can be approximated to the normal distribution with [tex]\mu = np, \sigma = \sqrt{np(1-p)}[/tex].
For the binomial distribution, the parameters are given as follows:
n = 100, p = 0.5.
Hence the mean and the standard deviation of the approximation are given as follows:
- [tex]\mu = np = 100(0.5) = 50[/tex].
- [tex]\sigma = \sqrt{np(1-p)} = \sqrt{100(0.5)(0.5)} = 5[/tex]
Using continuity correction, the probability of getting more than 66 heads is P(X > 66 + 0.5) = P(X > 66.5), which is one subtracted by the p-value of Z when X = 66.5.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{66.5 - 50}{5}[/tex]
Z = 3.3
Z = 3.3 has a p-value of 0.9995.
1 - 0.9995 = 0.0005.
0.0005 = 0.05%
More can be learned about the normal distribution at https://brainly.com/question/4079902
#SPJ1
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.