Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
If inspection department wants to estimate the mean amount with 95% confidence level with standard deviation 0.05 then it needed a sample size of 97.
Given 95% confidence level, standard deviation=0.05.
We know that margin of error is the range of values below and above the sample statistic in a confidence interval.
We assume that the values follow normal distribution. Normal distribution is a probability that is symmetric about the mean showing the data near the mean are more frequent in occurence than data far from mean.
We know that margin of error for a confidence interval is given by:
Me=[tex]z/2* ST/\sqrt{N}[/tex]
α=1-0.95=0.05
α/2=0.025
z with α/2=1.96 (using normal distribution table)
Solving for n using formula of margin of error.
[tex]n=(z/2ST/Me)^{2}[/tex]
n=[tex](1.96*0.05)^{2} /(0.01)^{2}[/tex]
=96.4
By rounding off we will get 97.
Hence the sample size required will be 97.
Learn more about standard deviation at https://brainly.com/question/475676
#SPJ4
The given question is incomplete and the full question is as under:
If the inspection division of a county weights and measures department wants to estimate the mean amount of soft drink fill in 2 liters bottles to within (0.01 liter with 95% confidence and also assumes that standard deviation is 0.05 liter. What is the sample size needed?
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.