Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The minimum surface area for the rectangular container is [tex]588cm^{2}[/tex].
How to find the surface area?
A solid object's surface area is a measurement of the overall space that the object's surface takes up. Compared to the definition of the arc length of a one-dimensional curve or the definition of the surface area for polyhedra (i.e., objects with flat polygonal faces), where the surface area is equal to the sum of the areas of its faces, the mathematical definition of surface area in the presence of curved surfaces is much more complex.
Let s be the side of the square base and h be the height.
Surface Area=[tex]s^{2}+4sh[/tex]
Volume=[tex]s^{2}h[/tex]
According to the question,
[tex]s^{2}h=1372\\ h=\frac{1372}{s^{2} }[/tex]
So, surface area=[tex]s^{2} +4s(\frac{1372}{s^{2} })[/tex]
=[tex]s^{2}+\frac{5488}{s}[/tex]
Differentiate with respect to s,
Surface area=[tex]2s-\frac{5488}{s^{2} }[/tex]
Now, [tex]2s-\frac{5488}{s^{2} }=0[/tex]
[tex]2s=\frac{5488}{s^{2} } \\2s^{3}=5488\\ s^{3}=2744\\ s=14[/tex]
Find the value of h from the volume.
[tex]14*14*h=1372\\h=\frac{1372}{14*14}\\ h=7[/tex]
Thus, the minimum surface area=[tex]14^{2}+4*14*7[/tex]
=[tex]588cm^{2}[/tex]
Learn more about the Surface area here:
https://brainly.com/question/20771646
#SPJ4
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.