Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The rate constant of the reaction at 125˚ is [tex]0.3115 \ \text{sec}^{-1}[/tex].
Explanation:
The Arrhenius equation is a simple equation that describes the dependent relationship between temperature and the rate constant of a chemical reaction. The Arrhenius equation is written mathematically as
[tex]k \ = \ Ae^{\displaystyle\frac{-E_{a}}{RT}}[/tex]
[tex]\ln k \ = \ \ln A \ - \ \displaystyle\frac{E_{a}}{RT}[/tex]
where [tex]k[/tex] is the rate constant, [tex]E_{a}[/tex] represents the activation energy of the chemical reaction, [tex]R[/tex] is the gas constant, [tex]T[/tex] is the temperature, and [tex]A[/tex] is the frequency factor.
The frequency factor, [tex]A[/tex], is a constant that is derived experimentally and numerically that describes the frequency of molecular collisions and their orientation which varies slightly with temperature but this can be assumed to be constant across a small range of temperatures.
Consider that the rate constant be [tex]k_{1}[/tex] at an initial temperature [tex]T_{1}[/tex] and the rate constant [tex]k_{2}[/tex] at a final temperature [tex]T_{2}[/tex], thus
[tex]\ln k_{2} \ - \ \ln k_{1} = \ \ln A \ - \ \displaystyle\frac{E_{a}}{RT_{2}} \ - \ \left(\ln A \ - \ \displaystyle\frac{E_{a}}{RT_{1}}\right) \\ \\ \\ \rule{0.62cm}{0cm} \ln \left(\displaystyle\frac{k_{2}}{k_{1}}\right) \ = \ \displaystyle\frac{E_{a}}{R}\left(\displaystyle\frac{1}{T_{1}} \ - \ \displaystyle\frac{1}{T_{2}} \right)[/tex]
[tex]\rule{1.62cm}{0cm} \displaystyle\frac{k_{2}}{k_{1}} \ = \ e^{\displaystyle\frac{E_{a}}{R}\left(\displaystyle\frac{1}{T_{1}} \ - \ \displaystyle\frac{1}{T_{2}} \right)} \\ \\ \\ \rule{1.62cm}{0cm} k_{2} \ = \ k_{1}e^{\displaystyle\frac{E_{a}}{R}\left(\displaystyle\frac{1}{T_{1}} \ - \ \displaystyle\frac{1}{T_{2}} \right)}[/tex]
Given that [tex]E_{a} \ = \ 26.5 \ \ \text{kJ/mol}[/tex], [tex]R \ = \ 8.3145 \ \ \text{J mol}^{-1} \ \text{K}^{-1}[/tex], [tex]T_{1} \ = \ \left(40 \ + \ 273\right) \ K[/tex], [tex]T_{2} \ = \ \left(125 \ + \ 273\right) \ K[/tex], and [tex]k_{1} \ = \ 0.0354 \ \ \text{sec}^{-1}[/tex], therefore,
[tex]k_{2} \ = \ \left(0.0354 \ \ \text{sec}^{-1}\right)e^{\displaystyle\frac{26500 \ \text{J mol}^{-1}}{8.3145 \ \text{J mol}^{-1} \ \text{K}^{-1}}\left(\displaystyle\frac{1}{313 \ \text{K}} \ - \ \displaystyle\frac{1}{398 \ \text{K}} \right)} \\ \\ \\ k_{2} \ = \ 0.3115 \ \ \text{sec}^{-1}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.