Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The given geometric series as shown in the question is seen to; Be converging with its' sum as 81
How to identify a converging or diverging series?
We are given the geometric series;
27 + 18 + 12 + 8 + ...
Now, we see that;
First term; a₀ = 27
Second Term; a₁ = 2(27/3)
Third term; a₂ = 2²(27/3²)
Fourth term; a₃ = 2³(27/3³)
Thus, the formula is;
2ⁿ(27/3ⁿ)
Applying limits at infinity gives;
2^(∞) * (27/3^(∞)) = 0
Since the terms of the series tend to zero, we can affirm that the series converges.
The sum of an infinite converging series is:
S_n = a/(1 - r)
S_n = 27/(1 - (2/3)
S_n = 81
Read more about converging or diverging series at; https://brainly.com/question/15415793
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.