Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Geometric sequence. Sum of a geometric series.
A geometric sequence goes from one term to the next by always multiplying or dividing by the constant value except 0. The constant number multiplied (or divided) at each stage of a geometric sequence is called the common ratio (r).
A geometric series is the sum of an infinite number of terms of a geometric sequence.
A geometric series is convergers if |r| < 1.
A geometric series is diveres if |r| > 1.
Calculate the common ratio:
[tex]r=\dfrac{18}{27}=\dfrac{18:9}{27:9}=\dfrac{2}{3}\\\\r=\dfrac{12}{18}=\dfrac{12:6}{18:6}=\dfrac{2}{3}\\\\r=\dfrac{8}{12}=\dfrac{8:24}{12:4}=\dfrac{2}{3}[/tex]
[tex]\left|\dfrac{2}{3}\right| < 1[/tex]
The geometric series is converges.
Therefore exist the sum.
Formula of a sum of a geometric series:
[tex]S=\dfrac{a_1}{1-r},\qquad|r| < 1[/tex]
Substitute:
[tex]a_1=27,\ r=\dfrac{2}{3}[/tex]
[tex]S=\dfrac{27}{1-\frac{2}{3}}=\dfrac{27}{\frac{1}{3}}=27\cdot\dfrac{3}{1}=81[/tex]
[tex]\huge\boxed{S=81}[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.