Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
If 45 g of O2 gas in a 500 mL container is exerting a pressure of 5.2 atm, 22.53K is the temperature in the gas.
What is an ideal gas equation?
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 5.2 atm
V= 500 mL =0.5 L
n=?
R= [tex]0.082057338 \;L \;atm \;K^{-1}mol^{-1}[/tex]
T=?
[tex]Moles = \frac{mass}{molar \;mass}[/tex]
[tex]Moles = \frac{45 g}{32}[/tex]
[tex]Moles = \frac{45 g}{32}[/tex]
Moles = 1.40625
Putting value in the given equation:
[tex]\frac{PV}{RT}=n[/tex]
[tex]1.40625= \frac{5.2 \;atm\; X \;0.5 \;L}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}[/tex]
T= 22.53167034 K= 22.53K
Hence, If 45 g of O2 gas in a 500 mL container is exerting a pressure of 5.2 atm, 22.53K is the temperature in the gas.
Learn more about the ideal gas here:
https://brainly.com/question/27691721
#SPJ1
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.