Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
[tex]f(x) = a(x^2+4)(x-3)^2[/tex]
Step-by-step explanation:
So I'm assuming it means that one of the zeros is at x=3 with a multiplicity of 2 and it has an imaginary solution of 4i. Anyways, imaginary solutions come in conjugate pairs meaning if you have a complex solution of [tex]a-bi[/tex] there is another complex solution which is the conjugate of that which is [tex]a+bi[/tex] but since the imaginary solution is 4i, the complex number is just [tex]0+4i[/tex] so the conjugate is [tex]0-4i[/tex] or [tex]-4i[/tex]. So since you have x=3 as a zero that can be represented as [tex](x-3)^2[/tex] since 3 would make it 0 and it has a multiplicity of 2. As for the other factors, you won't just have ([tex](x-4i)(x+4i)[/tex], you'll have a factor that is set up in a way that the solutions are: [tex]x=\pm\sqrt{-4}[/tex]. That means it'll be a quadratic. So it'll be in the form [tex]x^2+b[/tex]. Since you're moving b to the other side and it's negative. that means it has to be positive and since the value is 4, you'll have the factor [tex](x^2+4)[/tex] which when set equal to zero has the solutions sqrt(-4). So this gives you the equation
[tex]f(x) = a(x^2+4)(x-3)^2[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.