Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
"We can't use any of the patterns"
Step-by-step explanation:
You can't use [tex](U+V)^2[/tex] because that would result in some stuff in the middle. In general if you have something like that it would expand to [tex]U^2+2UV + V^2[/tex]. and same thing for the (U-V)^2 except the middle would be a negative number. You also can't use [tex](U+V)(U-V)[/tex] because it specifies "constant integers" and the "integer" part is what's really important, because you can technically rewrite the sum of squares as (U + V)(U - V) but you would need to use imaginary numbers. Because the difference of squares is defined as [tex]a^2-b^2 = (a-b)(a+b)[/tex]. But you can also think of it like this [tex]a-b = (\sqrt{a} - \sqrt{b})(\sqrt{a}+\sqrt{b})[/tex] because that's essentially what the original identity is saying. Using this definition you can write the sum of squares as [tex]a+b = a - (-b) = (\sqrt{a} + \sqrt{-b})(\sqrt{a} - \sqrt{-b}) = (\sqrt{a} + i\sqrt{b})(\sqrt{a} - i\sqrt{b})[/tex]. So with the restriction of constant integers "We can't use any of the patterns" is the correct answer
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.