Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

According to the rational root theorem, the numbers below are some of the potential roots of f(x) = 10x3 29x2 – 66x 27. select all that are actual roots.

Sagot :

The actual roots of the function [tex]f(x)=10x^{3}+29x^{2} -66x+27[/tex] are -9/2, 3/5 and 1.

Given  function [tex]f(x)=10x^{3}+29x^{2} -66x+27[/tex].

Function is a relationship between two or more variables expressed in equal to form.

The roots of a polynomial function are the zeroes of the polynomial function. A polynomial function is a function that involves only non negative integer powers in an equation.

The polynomial function is given as:

[tex]f(x)=10x^{3}+29x^{2} -66x+27[/tex]

factorize the above function

[tex]f(x)=(2x+9)(5x-3)(x-1)[/tex]

Now put the function f(x) equal to zero.

f(x)=(2x+9)(5x-3)(x-1)

split the function means put all the expressions equal to zero as under:

(2x+9)(5x-3)(x-1)=0

solve each for the value of x

x=-9/2,x=3/5,x=1

Hence the roots of the function [tex]f(x)=10x^{3} +29x^{2} -66x+27[/tex] are which are also the values of x are -9/2,3/5,1.

Learn more about function at https://brainly.com/question/10439235

#SPJ4

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.