Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The value of the quotient is [tex]\frac{45\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})} = 45(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))[/tex]
How to determine the quotient?
The expression is given as:
[tex]\frac{90\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{2\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})}[/tex]
Divide 90 by 2
[tex]\frac{45\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})}[/tex]
As a general rule, we have:
[tex]\frac{\cos(\frac{\pi}{A}) i\sin(\frac{\pi}{A})}{\cos(\frac{\pi}{B}) i\sin(\frac{\pi}{B})} = \cos(\frac{\pi}{2B/A}) + i\sin(\frac{\pi}{2B/A})[/tex]
The above means that:
A = 4 and B = 12
So, we have:
2B/A = 2 * 12/4
Evaluate
2B/A = 6
So, the equation becomes
[tex]\frac{\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})} = \cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})[/tex]
Substitute [tex]\frac{\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})} = \cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})[/tex] in [tex]\frac{45\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})}[/tex]
[tex]\frac{45\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})} = 45(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))[/tex]
Hence, the value of the quotient is [tex]\frac{45\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})} = 45(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))[/tex]
Read more about trigonometry expressions at:
https://brainly.com/question/561827
#SPJ1
Complete question
What is the quotient of [tex]\frac{90\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4})}{2\cos(\frac{\pi}{12}) i\sin(\frac{\pi}{12})}[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.