At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The transformation of a function may involve any change. The function f(x) is vertically stretched and shifted 5 units upwards to form h(x).
How does the transformation of a function happen?
The transformation of a function may involve any change.
Usually, these can be shifted horizontally (by transforming inputs) or vertically (by transforming output), stretched (multiplying outputs or inputs) etc.
If the original function is y = f(x), assuming the horizontal axis is the input axis and the vertical is for outputs, then:
Horizontal shift (also called phase shift):
- Left shift by c units, y=f(x+c) (same output, but c units earlier)
- Right shift by c units, y=f(x-c)(same output, but c units late)
Vertical shift
- Up by d units: y = f(x) + d
- Down by d units: y = f(x) - d
Stretching:
- Vertical stretch by a factor k: y = k \times f(x)
- Horizontal stretch by a factor k: y = f(\dfrac{x}{k})
The function f(x)=x^(1/3) is transformed to form the function of h(x)=(2x)^(1/3)+5. Therefore, the transformation made to the function is,
Vertically stretched by a factor of 2^(1/3) ⇒ 2^(1/3) × x^(1/3) = (2x)^(1/3)
Up by 5 units ⇒ (2x)^(1/3) + 5
Hence, the function f(x) is vertically stretched and shifted 5 units upwards to form h(x).
Learn more about Transforming functions:
https://brainly.com/question/17006186
#SPJ1

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.