At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The horizontal component of the tension in the string is a centripetal force, so by Newton's second law we have
• net horizontal force
[tex]F_{\rm tension} \sin(\theta) = \dfrac{mv^2}R[/tex]
where [tex]m=4.10\,\rm kg[/tex], [tex]v=2.85\frac{\rm m}{\rm s}[/tex], and [tex]R[/tex] is the radius of the circular path.
As shown in the diagram, we can see that
[tex]\sin(\theta) = \dfrac Rr \implies R = r\sin(\theta)[/tex]
where [tex]r=1.69\,\rm m[/tex], so that
[tex]F_{\rm tension} \sin(\theta) = \dfrac{mv^2}R \\\\ \implies F_{\rm tension} = \dfrac{mv^2}{r\sin^2(\theta)}[/tex]
The vertical component of the tension counters the weight of the mass and keeps it in the same plane, so that by Newton's second law we have
• net vertical force
[tex]F_{\rm \tension} \cos(\theta) - mg = 0 \\\\ \implies F_{\rm tension} = \dfrac{mg}{\cos(\theta)}[/tex]
Solve for [tex]\theta[/tex] :
[tex]\dfrac{mv^2}{r\sin^2(\theta)} = \dfrac{mg}{\cos(\theta)} \\\\ \implies \dfrac{\sin^2(\theta)}{\cos(\theta)} = \dfrac{v^2}{rg} \\\\ \implies \dfrac{1-\cos^2(\theta)}{\cos(\theta)} = \dfrac{v^2}{rg} \\\\ \implies \cos^2(\theta) + \dfrac{v^2}{rg} \cos(\theta) - 1 = 0[/tex]
Complete the square:
[tex]\cos^2(\theta) + \dfrac{v^2}{rg} \cos(\theta) + \dfrac{v^4}{4r^2g^2} = 1 + \dfrac{v^4}{4r^2g^2} \\\\ \implies \left(\cos(\theta) + \dfrac{v^2}{2rg}\right)^2 = 1 + \dfrac{v^4}{4r^2g^2} \\\\ \implies \cos(\theta) + \dfrac{v^2}{2rg} = \pm \sqrt{1 + \dfrac{v^4}{4r^2g^2}} \\\\ \implies \cos(\theta) = -\dfrac{v^2}{2rg} \pm \sqrt{1 + \dfrac{v^4}{4r^2g^2}}[/tex]
Plugging in the known quantities, we end up with
[tex]\cos(\theta) \approx 0.784 \text{ or } \cos(\theta) \approx -1.27[/tex]
The second case has no real solution, since [tex]-1\le\cos(\theta)\le1[/tex] for all [tex]\theta[/tex]. This leaves us with
[tex]\cos(\theta) \approx 0.784 \implies \theta \approx \cos^{-1}(0.784) \approx \boxed{38.3^\circ}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.