Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The horizontal component of the tension in the string is a centripetal force, so by Newton's second law we have
• net horizontal force
[tex]F_{\rm tension} \sin(\theta) = \dfrac{mv^2}R[/tex]
where [tex]m=4.10\,\rm kg[/tex], [tex]v=2.85\frac{\rm m}{\rm s}[/tex], and [tex]R[/tex] is the radius of the circular path.
As shown in the diagram, we can see that
[tex]\sin(\theta) = \dfrac Rr \implies R = r\sin(\theta)[/tex]
where [tex]r=1.69\,\rm m[/tex], so that
[tex]F_{\rm tension} \sin(\theta) = \dfrac{mv^2}R \\\\ \implies F_{\rm tension} = \dfrac{mv^2}{r\sin^2(\theta)}[/tex]
The vertical component of the tension counters the weight of the mass and keeps it in the same plane, so that by Newton's second law we have
• net vertical force
[tex]F_{\rm \tension} \cos(\theta) - mg = 0 \\\\ \implies F_{\rm tension} = \dfrac{mg}{\cos(\theta)}[/tex]
Solve for [tex]\theta[/tex] :
[tex]\dfrac{mv^2}{r\sin^2(\theta)} = \dfrac{mg}{\cos(\theta)} \\\\ \implies \dfrac{\sin^2(\theta)}{\cos(\theta)} = \dfrac{v^2}{rg} \\\\ \implies \dfrac{1-\cos^2(\theta)}{\cos(\theta)} = \dfrac{v^2}{rg} \\\\ \implies \cos^2(\theta) + \dfrac{v^2}{rg} \cos(\theta) - 1 = 0[/tex]
Complete the square:
[tex]\cos^2(\theta) + \dfrac{v^2}{rg} \cos(\theta) + \dfrac{v^4}{4r^2g^2} = 1 + \dfrac{v^4}{4r^2g^2} \\\\ \implies \left(\cos(\theta) + \dfrac{v^2}{2rg}\right)^2 = 1 + \dfrac{v^4}{4r^2g^2} \\\\ \implies \cos(\theta) + \dfrac{v^2}{2rg} = \pm \sqrt{1 + \dfrac{v^4}{4r^2g^2}} \\\\ \implies \cos(\theta) = -\dfrac{v^2}{2rg} \pm \sqrt{1 + \dfrac{v^4}{4r^2g^2}}[/tex]
Plugging in the known quantities, we end up with
[tex]\cos(\theta) \approx 0.784 \text{ or } \cos(\theta) \approx -1.27[/tex]
The second case has no real solution, since [tex]-1\le\cos(\theta)\le1[/tex] for all [tex]\theta[/tex]. This leaves us with
[tex]\cos(\theta) \approx 0.784 \implies \theta \approx \cos^{-1}(0.784) \approx \boxed{38.3^\circ}[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.