Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The horizontal component of the tension in the string is a centripetal force, so by Newton's second law we have
• net horizontal force
[tex]F_{\rm tension} \sin(\theta) = \dfrac{mv^2}R[/tex]
where [tex]m=4.10\,\rm kg[/tex], [tex]v=2.85\frac{\rm m}{\rm s}[/tex], and [tex]R[/tex] is the radius of the circular path.
As shown in the diagram, we can see that
[tex]\sin(\theta) = \dfrac Rr \implies R = r\sin(\theta)[/tex]
where [tex]r=1.69\,\rm m[/tex], so that
[tex]F_{\rm tension} \sin(\theta) = \dfrac{mv^2}R \\\\ \implies F_{\rm tension} = \dfrac{mv^2}{r\sin^2(\theta)}[/tex]
The vertical component of the tension counters the weight of the mass and keeps it in the same plane, so that by Newton's second law we have
• net vertical force
[tex]F_{\rm \tension} \cos(\theta) - mg = 0 \\\\ \implies F_{\rm tension} = \dfrac{mg}{\cos(\theta)}[/tex]
Solve for [tex]\theta[/tex] :
[tex]\dfrac{mv^2}{r\sin^2(\theta)} = \dfrac{mg}{\cos(\theta)} \\\\ \implies \dfrac{\sin^2(\theta)}{\cos(\theta)} = \dfrac{v^2}{rg} \\\\ \implies \dfrac{1-\cos^2(\theta)}{\cos(\theta)} = \dfrac{v^2}{rg} \\\\ \implies \cos^2(\theta) + \dfrac{v^2}{rg} \cos(\theta) - 1 = 0[/tex]
Complete the square:
[tex]\cos^2(\theta) + \dfrac{v^2}{rg} \cos(\theta) + \dfrac{v^4}{4r^2g^2} = 1 + \dfrac{v^4}{4r^2g^2} \\\\ \implies \left(\cos(\theta) + \dfrac{v^2}{2rg}\right)^2 = 1 + \dfrac{v^4}{4r^2g^2} \\\\ \implies \cos(\theta) + \dfrac{v^2}{2rg} = \pm \sqrt{1 + \dfrac{v^4}{4r^2g^2}} \\\\ \implies \cos(\theta) = -\dfrac{v^2}{2rg} \pm \sqrt{1 + \dfrac{v^4}{4r^2g^2}}[/tex]
Plugging in the known quantities, we end up with
[tex]\cos(\theta) \approx 0.784 \text{ or } \cos(\theta) \approx -1.27[/tex]
The second case has no real solution, since [tex]-1\le\cos(\theta)\le1[/tex] for all [tex]\theta[/tex]. This leaves us with
[tex]\cos(\theta) \approx 0.784 \implies \theta \approx \cos^{-1}(0.784) \approx \boxed{38.3^\circ}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.