Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

graph g(x) = 5|x-6| + 2

Sagot :

Answer + Step-by-step explanation:

[tex]f(x) = 5|x-6|+2 = \begin{cases}5\left( x-6\right) +2&if\ x\geq 6\\ 5\left( 6-x\right) +2 &if\ x\leq 6\end{cases}[/tex]

[tex]\Longrightarrow f(x) = \begin{cases}5x-30+2&if\ x\geq 6\\ 30-5x +2 &if\ x\leq 6\end{cases}[/tex]

[tex]\Longrightarrow f(x) = \begin{cases}5x-28&if\ x\geq 6\\ -5x +32 &if\ x\leq 6\end{cases}[/tex]

case 1: x ≥ 6 → f(x) = 5x - 28

5(6) - 28 = 30 - 28 = 2

Then

the point A(6 ,2) lie on the graph (line) of f

5(7) - 28 = 35 - 28 = 7

Then

the point B(7 ,7) lie on the graph (line) of f

Graphing :

When x ≥ 6 ,the graph of f is the ray [AB) (just connect the points A and B)

case 2: x ≤ 6 → f(x) = -5x + 32

-5(6) +32 = -30 + 32 = 2

Then

the point A(6 ,2) lie on the graph (line) of f

-5(5) +32 = -25 + 32 = 7

Then

the point C(5 ,7) lie on the graph (line) of f

Graphing :

When x ≤ 6 ,the graph of f is the ray [AC) (just connect the points A and C)

View image profarouk