Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The value of x in the equation is x=-44.
The given equation is [tex]\frac{3}{4}\left(\frac{1}{4}x+8\right)-\left(\frac{1}{2}x+2\right)=\frac{3}{8}(4-x)-\frac{1}{4}[/tex].
An algebraic expression in mathematics is an expression that's made from variables and constants, together with algebraic operations (addition, subtraction, etc.). Expressions are made of terms.
Firstly, apply the distributive property as a(b+c)=ab+ac and get
[tex]\begin{aligned}\frac{3}{4}\times \frac{1}{4}x+\frac{3}{4}\times 8-\frac{1}{2}x-2&=\frac{3}{8}\times 4-\frac{3}{8}\times x-\frac{1}{4}\\ \frac{3x}{16}+6-\frac{x}{2}-2&=\frac{3}{2}-\frac{3x}{8}-\frac{1}{4} \end[/tex]
Now, rearrange the terms by taking variable terms on the left-hand side and constant terms on the right-hand side as
[tex]\frac{3x}{16}-\frac{x}{2}+\frac{3x}{8}=\frac{3}{2}-\frac{1}{4}-6+2[/tex]
Further, simplify the above expression by taking L.C.M as
[tex]\begin{aligned}\frac{3x-8x+6x}{16}&=\frac{6-1}{4}-4\\ \frac{x}{16}&=\frac{5-16}{4}\\ \frac{x}{16}&=\frac{-11}{4}\end[/tex]
Then, multiply both sides with 4 and get
[tex]\begin{aligned}4\times \frac{x}{16}&=4\times \frac{-11}{4}\\ \frac{x}{4}&=\frac{-11}{1}\end[/tex]
Furthermore, cross multiply both sides and get
[tex]x=-44[/tex]
Hence, the value of x in the equation which is given [tex]\frac{3}{4}\left(\frac{1}{4}x+8\right)-\left(\frac{1}{2}x+2\right)=\frac{3}{8}(4-x)-\frac{1}{4}[/tex] is x=-44.
Learn about algebraic expression from here brainly.com/question/8690932
#SPJ4
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.