At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The slope of the tangent line to the curve at (8, 2) is given by the derivative [tex]\frac{dy}{dx}[/tex] at that point. By the chain rule,
[tex]\dfrac{dy}{dx} = \dfrac{dy}{dt} \times \dfrac{dt}{dx} = \dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]
Differentiate the given parametric equations with respect to [tex]t[/tex] :
[tex]x = 4t \implies \dfrac{dx}{dt} = 4[/tex]
[tex]y = \dfrac4t \implies \dfrac{dy}{dt} = -\dfrac4{t^2}[/tex]
Then
[tex]\dfrac{dy}{dx} = \dfrac{-\frac4{t^2}}4 = -\dfrac1{t^2}[/tex]
We have [tex]x=8[/tex] and [tex]y=2[/tex] when [tex]t=2[/tex], so the slope at the given point is [tex]\frac{dy}{dx} = -\frac14[/tex].
The normal line to the same point is perpendicular to the tangent line, so its slope is +4. Then using the point-slope formula for a line, the normal line has equation
[tex]y - 2 = 4 (x - 8) \implies \boxed{y = 4x - 30}[/tex]
Alternatively, we can eliminate the parameter and express [tex]y[/tex] explicitly in terms of [tex]x[/tex] :
[tex]x = 4t \implies t = \dfrac x4 \implies y = \dfrac4t = \dfrac4{\frac x4} = \dfrac{16}x[/tex]
Then the slope of the tangent line is
[tex]\dfrac{dy}{dx} = -\dfrac{16}{x^2}[/tex]
At [tex]x = 8[/tex], the slope is again [tex]-\frac{16}{64}=-\frac14[/tex], so the normal has slope +4, and so on.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.