At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Using an exponential function, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
How to determine the time
A decaying exponential function is given as;
[tex]A(t) = A(0)e^-kt[/tex]
Where A = initial value
k = decay constant
We have the half-life of amoxicillin as 62minutes, to determine k, we get
[tex]A(62) = 0. 5(0)[/tex]
[tex]A(62) = 0.5A(0)[/tex]
[tex]0. 5A(0) = A(0) e^{-62k}[/tex]
Solve the exponential function thus
[tex]e^{-62k} = 0. 5[/tex]
㏑ [tex]e^{-62k}[/tex] = ㏑ 0. 5
- 62k = ㏑ 0.5
Make k subject of formula
k = -㏑[tex]\frac{0. 5}{62}[/tex]
k = 0. 011179
The equation is given by
[tex]A(t) = A(0)e^-0.011179[/tex]
We have
[tex]0. 0001A(0) = A(0)e^-0.01179[/tex]
[tex]e^-0.011179t = 0. 0001[/tex]
㏑ [tex]e^-0.011179[/tex] = ㏑ 0.0001
[tex]-0.011179t = In 0.0001[/tex]
t = [tex]-\frac{In 0. 0001}{0. 011179}[/tex]
t = [tex]824[/tex]
Therefore, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
Learn more about half-life here:
https://brainly.com/question/26148784
#SPJ1
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.