Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using an exponential function, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
How to determine the time
A decaying exponential function is given as;
[tex]A(t) = A(0)e^-kt[/tex]
Where A = initial value
k = decay constant
We have the half-life of amoxicillin as 62minutes, to determine k, we get
[tex]A(62) = 0. 5(0)[/tex]
[tex]A(62) = 0.5A(0)[/tex]
[tex]0. 5A(0) = A(0) e^{-62k}[/tex]
Solve the exponential function thus
[tex]e^{-62k} = 0. 5[/tex]
㏑ [tex]e^{-62k}[/tex] = ㏑ 0. 5
- 62k = ㏑ 0.5
Make k subject of formula
k = -㏑[tex]\frac{0. 5}{62}[/tex]
k = 0. 011179
The equation is given by
[tex]A(t) = A(0)e^-0.011179[/tex]
We have
[tex]0. 0001A(0) = A(0)e^-0.01179[/tex]
[tex]e^-0.011179t = 0. 0001[/tex]
㏑ [tex]e^-0.011179[/tex] = ㏑ 0.0001
[tex]-0.011179t = In 0.0001[/tex]
t = [tex]-\frac{In 0. 0001}{0. 011179}[/tex]
t = [tex]824[/tex]
Therefore, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
Learn more about half-life here:
https://brainly.com/question/26148784
#SPJ1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.