Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using an exponential function, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
How to determine the time
A decaying exponential function is given as;
[tex]A(t) = A(0)e^-kt[/tex]
Where A = initial value
k = decay constant
We have the half-life of amoxicillin as 62minutes, to determine k, we get
[tex]A(62) = 0. 5(0)[/tex]
[tex]A(62) = 0.5A(0)[/tex]
[tex]0. 5A(0) = A(0) e^{-62k}[/tex]
Solve the exponential function thus
[tex]e^{-62k} = 0. 5[/tex]
㏑ [tex]e^{-62k}[/tex] = ㏑ 0. 5
- 62k = ㏑ 0.5
Make k subject of formula
k = -㏑[tex]\frac{0. 5}{62}[/tex]
k = 0. 011179
The equation is given by
[tex]A(t) = A(0)e^-0.011179[/tex]
We have
[tex]0. 0001A(0) = A(0)e^-0.01179[/tex]
[tex]e^-0.011179t = 0. 0001[/tex]
㏑ [tex]e^-0.011179[/tex] = ㏑ 0.0001
[tex]-0.011179t = In 0.0001[/tex]
t = [tex]-\frac{In 0. 0001}{0. 011179}[/tex]
t = [tex]824[/tex]
Therefore, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
Learn more about half-life here:
https://brainly.com/question/26148784
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.