Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Using an exponential function, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
How to determine the time
A decaying exponential function is given as;
[tex]A(t) = A(0)e^-kt[/tex]
Where A = initial value
k = decay constant
We have the half-life of amoxicillin as 62minutes, to determine k, we get
[tex]A(62) = 0. 5(0)[/tex]
[tex]A(62) = 0.5A(0)[/tex]
[tex]0. 5A(0) = A(0) e^{-62k}[/tex]
Solve the exponential function thus
[tex]e^{-62k} = 0. 5[/tex]
㏑ [tex]e^{-62k}[/tex] = ㏑ 0. 5
- 62k = ㏑ 0.5
Make k subject of formula
k = -㏑[tex]\frac{0. 5}{62}[/tex]
k = 0. 011179
The equation is given by
[tex]A(t) = A(0)e^-0.011179[/tex]
We have
[tex]0. 0001A(0) = A(0)e^-0.01179[/tex]
[tex]e^-0.011179t = 0. 0001[/tex]
㏑ [tex]e^-0.011179[/tex] = ㏑ 0.0001
[tex]-0.011179t = In 0.0001[/tex]
t = [tex]-\frac{In 0. 0001}{0. 011179}[/tex]
t = [tex]824[/tex]
Therefore, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
Learn more about half-life here:
https://brainly.com/question/26148784
#SPJ1
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.