Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Using an exponential function, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
How to determine the time
A decaying exponential function is given as;
[tex]A(t) = A(0)e^-kt[/tex]
Where A = initial value
k = decay constant
We have the half-life of amoxicillin as 62minutes, to determine k, we get
[tex]A(62) = 0. 5(0)[/tex]
[tex]A(62) = 0.5A(0)[/tex]
[tex]0. 5A(0) = A(0) e^{-62k}[/tex]
Solve the exponential function thus
[tex]e^{-62k} = 0. 5[/tex]
㏑ [tex]e^{-62k}[/tex] = ㏑ 0. 5
- 62k = ㏑ 0.5
Make k subject of formula
k = -㏑[tex]\frac{0. 5}{62}[/tex]
k = 0. 011179
The equation is given by
[tex]A(t) = A(0)e^-0.011179[/tex]
We have
[tex]0. 0001A(0) = A(0)e^-0.01179[/tex]
[tex]e^-0.011179t = 0. 0001[/tex]
㏑ [tex]e^-0.011179[/tex] = ㏑ 0.0001
[tex]-0.011179t = In 0.0001[/tex]
t = [tex]-\frac{In 0. 0001}{0. 011179}[/tex]
t = [tex]824[/tex]
Therefore, it would take 824 minutes before the amount of medication in Aldi's bloodstream is effectively 0.
Learn more about half-life here:
https://brainly.com/question/26148784
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.