Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
276 cm²
Step-by-step explanation:
Area of trapezium:
Construct a line DE parallel to AB.
DE = 13 cm
So, ABED is a parallelogram
In ΔDEC,
DE = a = 13 cm
EC = AB - BE
= 30 - 16
EC = b = 14 cm
DC = c = 15 cm
Use Heron's formula to find the area of triangle.
[tex]\sf s = \dfrac{a+b+c}{2}\\\\=\dfrac{13+15+14}{2}\\\\=\dfrac{42}{2}\\\\s = 21[/tex]
s-a = 21 - 13 = 8
s - b = 21 - 14 = 7
s - c = 21 - 15 = 6
[tex]\sf \boxed{\bf Area \ of \ triangle = \sqrt{s(s-a)(s-b)(s-c)} }[/tex]
[tex]\sf = \sqrt{21 * 8 * 7* 6}\\\\=\sqrt{3 * 7 * 2* 2 * 2 * 7 * 2 * 3}\\\\= 3 * 7 * 2 * 2\\\\= 84 \ cm^2[/tex]
Area of ΔDEC = 84 cm²
[tex]\sf \dfrac{1}{2}*base * height = 84\\\\ \dfrac{1}{2}*14*height = 84[/tex]
[tex]\sf height =\dfrac{84*2}{14}\\\\[/tex]
= 6 *2
height = 12 cm
Now we know the height of the trapezium. h = 12 cm
The length of the parallel sides are a = 30 cm & b =16 cm
[tex]\sf \boxed{Area \ of \ trapezium = \dfrac{(a +b)*h}{2}}[/tex]
[tex]\sf =\dfrac{(30+16)*12}{2}\\\\=\dfrac{46*12}{2}\\\\= 23 * 12\\\\= 276 \ cm^2[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.