Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The equation to model the situation is [tex]\mathbf{y = \dfrac{k}{x^2}}[/tex]. The constant for the variation is 2250.
What is the intensity of light?
The intensity of light from a lantern varies inversely to the square of the distance from the lantern.
From the given information:
- Let y be the intensity of light, and
- x be the distance from the lantern
Then:
[tex]\mathbf{y \alpha \dfrac{1}{x^2} }[/tex]
[tex]\mathbf{y = \dfrac{k}{x^2} }[/tex] here, k = constant.
2.
If y = 90 W/m² when the distance x = 5m
Then:
[tex]\mathbf{90 = \dfrac{k}{(5)^2}}[/tex]
k = 90 × 25
k = 2250
c.
The equation to model the situation by using the constant variation is:
[tex]\mathbf{y = \dfrac{2250}{x^2}}[/tex]
d.
If the light intensity y = 40, then x is determined as:
[tex]\mathbf{40 = \dfrac{2250}{x^2}}[/tex]
[tex]\mathbf{x = \sqrt{\dfrac{2250}{40}}}[/tex]
x = 7.5 m
e.
The light is needed in (225 × 1000)m = 225000 km of illumination.
f.
The lantern required for the new light estimation is:
y = 2250/225000
y = 0.01 intensity
Therefore, we can conclude that to get an intensity of 1 W/m², we need to put 100 lanterns.
Learn more about intensity of light here:
https://brainly.com/question/19791748
#SPJ1
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.