At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The equation to model the situation is [tex]\mathbf{y = \dfrac{k}{x^2}}[/tex]. The constant for the variation is 2250.
What is the intensity of light?
The intensity of light from a lantern varies inversely to the square of the distance from the lantern.
From the given information:
- Let y be the intensity of light, and
- x be the distance from the lantern
Then:
[tex]\mathbf{y \alpha \dfrac{1}{x^2} }[/tex]
[tex]\mathbf{y = \dfrac{k}{x^2} }[/tex] here, k = constant.
2.
If y = 90 W/m² when the distance x = 5m
Then:
[tex]\mathbf{90 = \dfrac{k}{(5)^2}}[/tex]
k = 90 × 25
k = 2250
c.
The equation to model the situation by using the constant variation is:
[tex]\mathbf{y = \dfrac{2250}{x^2}}[/tex]
d.
If the light intensity y = 40, then x is determined as:
[tex]\mathbf{40 = \dfrac{2250}{x^2}}[/tex]
[tex]\mathbf{x = \sqrt{\dfrac{2250}{40}}}[/tex]
x = 7.5 m
e.
The light is needed in (225 × 1000)m = 225000 km of illumination.
f.
The lantern required for the new light estimation is:
y = 2250/225000
y = 0.01 intensity
Therefore, we can conclude that to get an intensity of 1 W/m², we need to put 100 lanterns.
Learn more about intensity of light here:
https://brainly.com/question/19791748
#SPJ1
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.