At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The equation to model the situation is [tex]\mathbf{y = \dfrac{k}{x^2}}[/tex]. The constant for the variation is 2250.
What is the intensity of light?
The intensity of light from a lantern varies inversely to the square of the distance from the lantern.
From the given information:
- Let y be the intensity of light, and
- x be the distance from the lantern
Then:
[tex]\mathbf{y \alpha \dfrac{1}{x^2} }[/tex]
[tex]\mathbf{y = \dfrac{k}{x^2} }[/tex] here, k = constant.
2.
If y = 90 W/m² when the distance x = 5m
Then:
[tex]\mathbf{90 = \dfrac{k}{(5)^2}}[/tex]
k = 90 × 25
k = 2250
c.
The equation to model the situation by using the constant variation is:
[tex]\mathbf{y = \dfrac{2250}{x^2}}[/tex]
d.
If the light intensity y = 40, then x is determined as:
[tex]\mathbf{40 = \dfrac{2250}{x^2}}[/tex]
[tex]\mathbf{x = \sqrt{\dfrac{2250}{40}}}[/tex]
x = 7.5 m
e.
The light is needed in (225 × 1000)m = 225000 km of illumination.
f.
The lantern required for the new light estimation is:
y = 2250/225000
y = 0.01 intensity
Therefore, we can conclude that to get an intensity of 1 W/m², we need to put 100 lanterns.
Learn more about intensity of light here:
https://brainly.com/question/19791748
#SPJ1
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.