Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Considering the combined law, the volume of the sample is 81.639 L at 423 K and 1.00 atm.
Charles's law
Charles's law establishes the relationship between the temperature and the volume of a gas when the pressure is constant. This law says that the volume is directly proportional to the temperature of the gas: if the temperature increases, the volume of the gas increases while if the temperature of the gas decreases, the volume decreases.
Mathematically, Charles's law states:
[tex]\frac{V}{T}=k[/tex]
Boyle's law
Boyle's law states that the pressure of a gas in a closed container is inversely proportional to the volume of the container, when the temperature is constant. That is, if the pressure increases, the volume decreases while if the pressure decreases, the volume increases.
Mathematically, this law is expressed as:
P×V= k
Gay-Lussac's law
Gay-Lussac's law establishes the relationship between the temperature and pressure of a gas when the volume is constant. This law says that the pressure of a gas is directly proportional to its temperature: if the temperature increases, the pressure will increase, while if the temperature decreases, the pressure will decrease.
Mathematically, Gay-Lussac's law states:
[tex]\frac{P}{T}=k[/tex]
Combined law equation
Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:
[tex]\frac{VxP}{T}=k[/tex]
Considering an initial state 1 and a final state 2, it is fulfilled:
[tex]\frac{V1xP1}{T1}=\frac{V2xP2}{T2}[/tex]
Volume of the sample
In this case, you know:
- V1= 57.9 L
- P1= 1 atm
- T1= 300 K
- V2= ?
- P2= 1 atm
- T2= 423 K
Replacing in combined law equation:
[tex]\frac{57.9 Lx1 atm}{300 K}=\frac{V2x1 atm}{423 K}[/tex]
Solving:
[tex]V2= \frac{423 K}{1 atm} \frac{57.9 Lx1 atm}{300 K}[/tex]
V2= 81.639 L
Finally, the volume of the sample is 81.639 L at 423 K and 1.00 atm.
Learn more about combined law equation:
https://brainly.com/question/4147359
#SPJ1
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.