Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Using the hypergeometric distribution, the probabilities are given as follows:
a) 0.0333 = 3.33%.
b) 0.5 = 50%.
c) 0.8333 = 83.33%.
d) 0.9667 = 96.67%.
What is the hypergeometric distribution formula?
The formula is:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
The values of the parameters are:
N = 10, n = 3, k = 4.
Item a:
The probability is P(X = 3), hence:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 3) = h(3,10,3,4) = \frac{C_{4,3}C_{6,0}}{C_{10,3}} = 0.0333[/tex]
Item b:
The probability is P(X = 1), hence:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 1) = h(1,10,3,4) = \frac{C_{4,1}C_{6,2}}{C_{10,3}} = 0.5[/tex]
Item c:
The probability is:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,10,3,4) = \frac{C_{4,0}C_{6,3}}{C_{10,3}} = 0.1667[/tex]
Then:
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.1667 = 0.8333[/tex]
Item d:
The probability is:
[tex]P(X \leq 2) = 1 - P(X = 3)[/tex].
Considering item a:
[tex]P(X \leq 2) = 1 - P(X = 3) = 1 - 0.0333 = 0.9667[/tex]
More can be learned about the hypergeometric distribution at https://brainly.com/question/24826394
#SPJ1
Let [tex]O[/tex] be the random variable for the number of bad oranges picked out. Then
[tex]P(O=o) = \dfrac{\dbinom6{3-o} \dbinom4o}{\dbinom{10}3}[/tex]
if [tex]o\in\{0,1,2,3\}[/tex] and zero otherwise, where
[tex]\dbinom nk = \dfrac{n!}{k!(n-k)!}[/tex]
is the so-called binomial coefficient.
(a) Of the 6 good oranges, you pick 0. Of the 3 bad oranges, you pick 3. Of the 10 total oranges, you pick 3. So the probability of picking out all bad oranges is
[tex]P(O=3) = \dfrac{\dbinom60 \dbinom43}{\dbinom{10}3} = \boxed{\dfrac1{30}}[/tex]
(b) By similar reasoning, the probability of drawing exactly 1 bad orange is
[tex]P(O=1) = \dfrac{\dbinom62 \dbinom41}{\dbinom{10}3} = \boxed{\dfrac12}[/tex]
(c) "At least 1 bad orange" means you pick out 1, 2, or 3 bad oranges. These events are mutually exclusive, and we already know the probabilities of picking out exactly 1 or all 3 bad oranges. The remaining probability of drawing 2 bad oranges is
[tex]P(O=2) = \dfrac{\dbinom61 \dbinom42}{\dbinom{10}3} = \dfrac3{10}[/tex]
so the overall probability of drawing at least 1 bad orange is
[tex]P(O\ge1) = P(O=1)+P(O=2)+P(O=3) =\dfrac1{30} + \dfrac3{10} + \dfrac12 = \boxed{\dfrac56}[/tex]
(d) I assume you mean "at most 2 bad oranges," meaning you pick out 0, 1, or 2 bad oranges. Again, these events are mutually exclusive, and the probability of picking out no bad oranges is
[tex]P(O=0) = \dfrac{\dbinom63 \dbinom40}{\dbinom{10}3} = \dfrac16[/tex]
hence the probability of drawings at most 2 bad oranges is
[tex]P(O\le2) = P(O=0) + P(O=1) + P(O=2) = \dfrac16 + \dfrac12 + \dfrac3{10} = \boxed{\dfrac{29}{30}}[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.