Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is the relationship between the lines determined by the following two equations?

15x−3y=−12
y = 5x + 7


They are the same line.


neither parallel nor perpendicular


perpendicular


parallel


Sagot :

Answer:

D

Step-by-step explanation:

to determine the relationship between these two lines you have to find the slope.

=> if they have the same slope ,then they are parallel.

=> if they have negative inverse slope relative to each other ,then they are perpendicular.

=> if the slope for both equations is neither of the above cases ,then the two equations are neither parallel nor perpendicular.

so if we divide the first equation by 3 which is the commen factor for the whole equation and arrange it in the form y=mx +b it would give us y =5x +4. and since the two have the same slope which is 5 ,then we can conclude they are parallel lines.

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.