Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
I think factorizing everything you can first will make the simplification ... well, simpler.
[tex]\dfrac{x^2 - 3x}{x^2 + 13x + 36} \div \dfrac{x^2+7x}{x^2+16x+63} = \dfrac{x(x-3)}{(x+4)(x+9)} \div \dfrac{x(x+7)}{(x+7)(x+9)}[/tex]
The factors of [tex]x+7[/tex] in the second rational expression cancel:
[tex]\dfrac{x^2 - 3x}{x^2 + 13x + 36} \div \dfrac{x^2+7x}{x^2+16x+63} = \dfrac{x(x-3)}{(x+4)(x+9)} \div \dfrac{x}{x+9}[/tex]
Now, use the property
[tex]\dfrac ab \div \dfrac cd = \dfrac ab \times \dfrac dc[/tex]
(this is the property of multiplication having to do with multiplicative inverse, or "inverting the divisor" as the question calls it) to write
[tex]\dfrac{x^2 - 3x}{x^2 + 13x + 36} \div \dfrac{x^2+7x}{x^2+16x+63} = \dfrac{x(x-3)}{(x+4)(x+9)} \times \dfrac{x+9}x[/tex]
and we see some more cancellation, namely of the factors of [tex]x[/tex] and [tex]x+9[/tex].
[tex]\dfrac{x^2 - 3x}{x^2 + 13x + 36} \div \dfrac{x^2+7x}{x^2+16x+63} = \boxed{\dfrac{x-3}{x+4}}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.