Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The complete equation of the polynomial is 2x(x^2 - 11x) + 10x^3 = 3x(4x^2 - 7x) - x^2
How to complete the blanks?
The equation is given as:
_x(x^2 - _x) + _x^3 = _x(_x^2 + _x) - x^2
Complete the blanks using alphabets
ax(x^2 - bx) + cx^3 = dx(ex^2 + fx) - x^2
Open the brackets
ax^3 - abx^2 + cx^3 = dex^3 + dfx^2- x^2
Factorize the expression
(a + c)x^3 - abx^2 = dex^3 + (df - 1)x^2
By comparison, we have:
a + c = de
-ab = df - 1
Rewrite the second equation as:
ab + df = 1
So, we have:
a + c = de
ab + df = 1
Set a = 2 and c = 10.
So, we have:
a + c = de ⇒ de = 2 + 10 ⇒ de = 12
ab + df = 1 ⇒2b + df = 1
Express 12 as 3 * 4 in de = 12
de = 3 * 4
By comparison, we have:
d = 3 and e = 4
So, we have:
2b + df = 1
This gives
2b + 3f = 1
Set b = 11.
So, we have:
2 * 11 + 3f = 1
This gives
22 + 3f = 1
Subtract 22 from both sides
3f = -21
Divide by 3
f = -7
Hence, the complete equation is:
2x(x^2 - 11x) + 10x^3 = 3x(4x^2 - 7x) - x^2
Read more about polynomials at:
https://brainly.com/question/4142886
#SPJ1
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.