Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
The distance is 7.3 units.
Step-by-step explanation:
Two given points: (-3, 1) and (4, -1)
[tex]\sf Distance \ between \ two \ points = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Here given:
- x₂ = 4
- x₁ = -3
- y₂ = -1
- y₁ = 1
Applying the formula:
[tex]\sf d = \sqrt{(4 - (-3))^2 + (-1 - 1)^2}[/tex]
[tex]\sf d = \sqrt{(7)^2 + (-2)^2}[/tex]
[tex]\sf d = \sqrt{49 + 4}[/tex]
[tex]\sf d = \sqrt{53} \ \approx \ 7.28 \ \approx \ 7.3 \ (rounded)[/tex]
Answer:
7.3
Step-by-step explanation:
The distance of a line segment between two points (x1, y1) and (x2, y2) is given by the formula
[tex]d = \sqrt{(x2-x1)^2 + (y2-y1)^2}[/tex]
If we look at the graph,
the leftmost point of the line is at (-3, 1). Let's call this (x1, y1)
the rightmost point is at (4, -1). Let's call this (x2, y2)
Substituting these values into the distance formula gives us
[tex]d = \sqrt{(4-(-3)^2 + (1-(1)^2} \\ \\d = \sqrt{(7)^2 + (-2)^2} \\ \\d = \sqrt{49 + 4} \\\\d = \sqrt{(x2-x1)^2 + (y2-y1)^2}\\\\d = \sqrt{53} = 7.28[/tex]
Rounded to one decimal place, this is 7.3
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.