At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Stokes' theorem relates the surface integral of the curl of [tex]\vec F[/tex] across [tex]S[/tex] to the line integral of [tex]\vec F[/tex] along the boundary of [tex]S[/tex].
The boundary of [tex]S[/tex] is a circle with radius 7 centered at the origin in the [tex]x,y[/tex]-plane. Parameterize this path by
[tex]\vec r(t) = 7\cos(t)\,\vec\imath + 7\sin(t)\,\vec\jmath[/tex]
with [tex]0\le t\le2\pi[/tex]. Observe that [tex]z=0[/tex], so [tex]\cos(z) = 1[/tex] and the [tex]\vec\jmath[/tex]-component of [tex]\vec F[/tex] contributes nothing. The double integral then reduces to
[tex]\displaystyle \iint_S (\nabla\times\vec F)\cdot d\vec S = \int_0^{2\pi} \vec F(\vec r(t)) \cdot \frac{d\vec r}{dt} \, dt \\\\ ~~~~~~~~ = \int_0^{2\pi} \left(e^{49\cos(t)\sin(t)}\,\vec\imath + 49\cos(t)\sin(t)\,\vec\jmath\right) \cdot \left(-7\sin(t)\,\vec\imath + 7\cos(t)\,\vec\jmath\right) \, dt \\\\ ~~~~~~~~ = -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]
Observe that by substituting [tex]t=u+\pi[/tex], we have
[tex]\sin(t) = \sin(u+\pi) = \sin(u)\cos(\pi) + \cos(u)\sin(\pi) = -\sin(u)[/tex]
so that the integral over [tex][\pi,2\pi][/tex] can be expressed in terms of the integral over [tex][0,\pi][/tex] as
[tex]\displaystyle \int_\pi^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = \int_0^\pi -e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]
Then the integrals over [tex][0,\pi][/tex] and [tex][\pi,2\pi][/tex] cancel each other and integral of the curl of [tex]\vec F[/tex] is
[tex]\displaystyle -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = -7 \int_0^\pi 0 \, dt = \boxed{0}[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.