Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Stokes' theorem relates the surface integral of the curl of [tex]\vec F[/tex] across [tex]S[/tex] to the line integral of [tex]\vec F[/tex] along the boundary of [tex]S[/tex].
The boundary of [tex]S[/tex] is a circle with radius 7 centered at the origin in the [tex]x,y[/tex]-plane. Parameterize this path by
[tex]\vec r(t) = 7\cos(t)\,\vec\imath + 7\sin(t)\,\vec\jmath[/tex]
with [tex]0\le t\le2\pi[/tex]. Observe that [tex]z=0[/tex], so [tex]\cos(z) = 1[/tex] and the [tex]\vec\jmath[/tex]-component of [tex]\vec F[/tex] contributes nothing. The double integral then reduces to
[tex]\displaystyle \iint_S (\nabla\times\vec F)\cdot d\vec S = \int_0^{2\pi} \vec F(\vec r(t)) \cdot \frac{d\vec r}{dt} \, dt \\\\ ~~~~~~~~ = \int_0^{2\pi} \left(e^{49\cos(t)\sin(t)}\,\vec\imath + 49\cos(t)\sin(t)\,\vec\jmath\right) \cdot \left(-7\sin(t)\,\vec\imath + 7\cos(t)\,\vec\jmath\right) \, dt \\\\ ~~~~~~~~ = -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]
Observe that by substituting [tex]t=u+\pi[/tex], we have
[tex]\sin(t) = \sin(u+\pi) = \sin(u)\cos(\pi) + \cos(u)\sin(\pi) = -\sin(u)[/tex]
so that the integral over [tex][\pi,2\pi][/tex] can be expressed in terms of the integral over [tex][0,\pi][/tex] as
[tex]\displaystyle \int_\pi^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = \int_0^\pi -e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]
Then the integrals over [tex][0,\pi][/tex] and [tex][\pi,2\pi][/tex] cancel each other and integral of the curl of [tex]\vec F[/tex] is
[tex]\displaystyle -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = -7 \int_0^\pi 0 \, dt = \boxed{0}[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.