Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The equation for the line passing through point A and perpendicular to AB will be y-0.5x=6, the gradient of line AB is -2, and the gradient of a line perpendicular to AB is 0.5.
What is the slope or gradient?
A numerical assessment of a line's angle relative to the ground is known as the slope.
Given data;
m₁ is the slope of line AB
m₂ is the slope of a line perpendicular to AB
The coordinate points are,
A,(x₁,y₁)= (0, 6)
B,(x₂,y₂)=(3, 0).
The gradient of line AB;
[tex]\rm m_{{1} }= \frac{y_2-y_1}{x_2-x_1} \\\\ \rm m_{{1} }= \frac{0-6}{3-0} \\\\ m_{{1} }=-2[/tex]
The slope of the lines has a perpendicular relation is -1;
m₁ × m₂ = -1
(-2) × m₂ = -1
m₂ = 1/2
m₂ = 0.5
The equation of the line passing through point A and perpendicular to AB;
(y - y₁) = m₂(x-x₁)
(y-6)=0.5(x-0)
y-6 = 0.5 x
y-0.5x=6
Hence, the gradient of line AB, the gradient of a line perpendicular to AB, and the equation of the line passing through point A and perpendicular to AB will be -2,0.5 and y-0.5x=6.
To learn more about the slope, refer to the link;
https://brainly.com/question/3605446
#SPJ1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.