Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Solve ABC. Round decimal answers to the nearest tenth.

Solve ABC Round Decimal Answers To The Nearest Tenth class=

Sagot :

The sine rule of trigonometry helps us to equate the side of the triangles to the angles of the triangles. The given triangle can be solved as shown below.

What is Sine rule?

The sine rule of trigonometry helps us to equate the side of the triangles to the angles of the triangles. It is given by the formula,

[tex]\dfrac{Sin\ A}{\alpha} =\dfrac{Sin\ B}{\beta} =\dfrac{Sin\ C}{\gamma}[/tex]

where Sin A is the angle and α is the length of the side of the triangle opposite to angle A,

Sin B is the angle and β is the length of the side of the triangle opposite to angle B,

Sin C is the angle and γ is the length of the side of the triangle opposite to angle C.

For the given triangle, using the sine rule the ratio of the angle and the sides of the triangle can be written as,

[tex]\dfrac{Sin\ A}{18} =\dfrac{Sin\ B}{11} =\dfrac{Sin\ C}{c}\\\\\dfrac{Sin\ 72^o}{18} =\dfrac{Sin\ y^o}{11} =\dfrac{Sin\ x^o}{c}[/tex]

Taking the first two ratios,

[tex]\dfrac{Sin\ 72^o}{18} =\dfrac{Sin\ y^o}{11}\\\\y = 35.54^o[/tex]

The sum of all the angles of a triangle is 180°.

72° + 35.54° + x° = 180°

x = 72.46°

Now, using the sine ratio,

[tex]\dfrac{Sin\ 72^o}{18} =\dfrac{Sin\ 72.46^o}{c}\\\\c = 18.046[/tex]

Hence, the given triangle is solved.

Learn more about Sine Rule:

https://brainly.com/question/17289163

#SPJ1

We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.