Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
We can write a system of equations:
1x + 10y = 182
x + y = 56
Where 'x' is the number of $1 bills, and 'y' is the number of $10 bills.
To find this we can solve using substitution.
Re-arrange the 2nd equation:
x + y = 56
Subtract 'y' to both sides:
x = -y + 56
Now we can plug in '-y + 56' for 'x' in the first equation.
1x + 10y = 182
1(-y + 56) + 10y = 182
-y + 56 + 10y = 182
Subtract 56 to both sides:
-y + 10y = 126
Combine like terms:
9y = 126
Divide 9 to both sides:
y = 14
Now we can plug this into any of the two equations to find the 'x' value.
x + y = 56
x + 14 = 56
Subtract 14 to both sides:
x = 42
So our final answer is (42, 14).
This means that the motel clerk had 42 $1 bills, and 14 $10 bills.
1x + 10y = 182
x + y = 56
Where 'x' is the number of $1 bills, and 'y' is the number of $10 bills.
To find this we can solve using substitution.
Re-arrange the 2nd equation:
x + y = 56
Subtract 'y' to both sides:
x = -y + 56
Now we can plug in '-y + 56' for 'x' in the first equation.
1x + 10y = 182
1(-y + 56) + 10y = 182
-y + 56 + 10y = 182
Subtract 56 to both sides:
-y + 10y = 126
Combine like terms:
9y = 126
Divide 9 to both sides:
y = 14
Now we can plug this into any of the two equations to find the 'x' value.
x + y = 56
x + 14 = 56
Subtract 14 to both sides:
x = 42
So our final answer is (42, 14).
This means that the motel clerk had 42 $1 bills, and 14 $10 bills.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.