Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
The enthalpy of reaction per mole of HBr for this
reaction = ArH =-40.62 kJ/mole.
Explanation:
2HBr(g) + C12(g) > 2HC|(g) + Br2 (g)
When 23.9 g HBr(g) reacts with sufficient C12(g),
12.0 kJ of heat is evolved, calculate the value of
Ar for the chemical reaction.
Note that ArH is the enthalpy per mole for the
reaction.
Molar mass of HBr (g) = 80.91 g/mol.
Hence, 1 mole of HBr = 80.91 g
23.9 g of HBr led to the reaction giving off 12.0
kJ of heat
80.91 g of HBr will lead to the evolution of (80.91
× 12/23.9) = 40.62 kJ heat is given off.
Hence, 40.62 kJ of heat is given off per 80.91 g
of HBr.
This directly translates to that 40.62 kJ of heat is
given off per 1 mole of HBr
Hence, the heat given off per mole of HBr for
this reaction is 40.62 kJ/mole.
But since the reaction liberates heat, it means
the reaction is exothermic and the enthalpy
change for the reaction (AHrxn) is negative.
-40.62
The enthalpy of reaction per mole of HBr for this
reaction = ArH =-40.62 kJ/mole.
Explanation:
2HBr(g) + C12(g) > 2HC|(g) + Br2 (g)
When 23.9 g HBr(g) reacts with sufficient C12(g),
12.0 kJ of heat is evolved, calculate the value of
Ar for the chemical reaction.
Note that ArH is the enthalpy per mole for the
reaction.
Molar mass of HBr (g) = 80.91 g/mol.
Hence, 1 mole of HBr = 80.91 g
23.9 g of HBr led to the reaction giving off 12.0
kJ of heat
80.91 g of HBr will lead to the evolution of (80.91
× 12/23.9) = 40.62 kJ heat is given off.
Hence, 40.62 kJ of heat is given off per 80.91 g
of HBr.
This directly translates to that 40.62 kJ of heat is
given off per 1 mole of HBr
Hence, the heat given off per mole of HBr for
this reaction is 40.62 kJ/mole.
But since the reaction liberates heat, it means
the reaction is exothermic and the enthalpy
change for the reaction (AHrxn) is negative.
-40.62
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.