Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The graph of any function and the graph of its inverse are symmetric with respect to the

The Graph Of Any Function And The Graph Of Its Inverse Are Symmetric With Respect To The class=

Sagot :

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]

A function should be one - to - one and onto in order to have inverse.

and to find the point on its inverse function we swap the value of x - coordinate and y - coordinate.

like (x , y) becomes (y , x)

The only way we get (y , x) is by taking image of point (x , y) about line : y = x

[tex] \qquad \large \sf {Conclusion} : [/tex]

we can conclude that the graph of a function and it's inverse is symmetric about equation (line) : y = x