At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The graph of any function and the graph of its inverse are symmetric with respect to the

The Graph Of Any Function And The Graph Of Its Inverse Are Symmetric With Respect To The class=

Sagot :

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]

A function should be one - to - one and onto in order to have inverse.

and to find the point on its inverse function we swap the value of x - coordinate and y - coordinate.

like (x , y) becomes (y , x)

The only way we get (y , x) is by taking image of point (x , y) about line : y = x

[tex] \qquad \large \sf {Conclusion} : [/tex]

we can conclude that the graph of a function and it's inverse is symmetric about equation (line) : y = x