At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The graph of any function and the graph of its inverse are symmetric with respect to the

The Graph Of Any Function And The Graph Of Its Inverse Are Symmetric With Respect To The class=

Sagot :

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]

A function should be one - to - one and onto in order to have inverse.

and to find the point on its inverse function we swap the value of x - coordinate and y - coordinate.

like (x , y) becomes (y , x)

The only way we get (y , x) is by taking image of point (x , y) about line : y = x

[tex] \qquad \large \sf {Conclusion} : [/tex]

we can conclude that the graph of a function and it's inverse is symmetric about equation (line) : y = x