Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The number of permutations of picking 4 pens from the box is 30.
There are six different unique colored pens in a box.
We have to select four pens from the different unique colored pens.
We have to find in how many different orders the four pens can be selected.
What is a permutation?
A permutation is the number of different arrangements of a set of items in a particular definite order.
The formula used for permutation of n items for r selection is:
[tex]^nP_r = \frac{n!}{r!}[/tex]
Where n! = n(n-1)(n-2)(n-3)..........1 and r! = r(r-1)(r-2)(r-3)........1
We have,
Number of colored pens = 6
n = 6.
Number of pens to be selected = 4
r = 4
Applying the permutation formula.
We get,
= [tex]^6P_4[/tex]
= 6! / 4!
=(6x5x4x3x2x1 ) / ( 4x3x2x1)
= 6x5
=30
Thus the number of permutations of picking 4 pens from a total of 6 unique colored pens in the box is 30.
Learn more about permutation here:
https://brainly.com/question/14767366
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.