Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

The following scatterplot shows the percentage of the vote a candidate received in the 2016 senatorial elections
according to the voter's income level based on an exit poll of voters conducted by a news agency. The income
levels 1-8 correspond to the following income classes:
1 = Under $15,000; 2 = $15-30,000; 3 = $30-50,000; 4 = $50-75,000; 5 = $75-100,000;
6 = $100-150,000; 7 = $150-200,000; 8 = $200,000 or more.
Use the election scatterplot to the find the critical values corresponding to a 0.01 significance level used to test
the null hypothesis of ρs = 0.
A) -0.881 and 0.881
B) -0.881
C) -0.738 and 0.738
D) 0.881


Sagot :

The critical values corresponding to a 0.01 significance level used to test the null hypothesis of ρs = 0 is (a) -0.881 and 0.881

How to determine the critical values corresponding to a 0.01 significance level?

The scatter plot of the election is added as an attachment

From the scatter plot, we have the following highlights

  • Number of paired observations, n = 8
  • Significance level = 0.01

Start by calculating the degrees of freedom (df) using

df =n - 2

Substitute the known values in the above equation

df = 8 - 2

Evaluate the difference

df = 6

Using the critical value table;

At a degree of freedom of 6 and significance level of 0.01, the critical value is

z = 0.834

From the list of given options, 0.834 is between  -0.881 and 0.881

Hence, the critical values corresponding to a 0.01 significance level used to test the null hypothesis of ρs = 0 is (a) -0.881 and 0.881

Read more about null hypothesis at

https://brainly.com/question/14016208

#SPJ1

View image MrRoyal