At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Use matrices to solve the system of equations if possible. Use Gaussian elimination with back substitution or gauss Jordan elimination. -x+y-z=-20,2x-y+z=29, 3x+2y+z=29

Sagot :

In matrix form, the system is given by

[tex]\begin{bmatrix} -1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -20 \\ 29 \\ 29 \end{bmatrix}[/tex]

I'll use G-J elimination. Consider the augmented matrix

[tex]\left[ \begin{array}{ccc|c} -1 & 1 & -1 & -20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right][/tex]

• Multiply through row 1 by -1.

[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right][/tex]

• Eliminate the entries in the first column of the second and third rows. Combine -2 (row 1) with row 2, and -3 (row 1) with row 3.

[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 5 & -2 & -31 \end{array} \right][/tex]

• Eliminate the entry in the second column of the third row. Combine -5 (row 2) with row 3.

[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 3 & 24 \end{array} \right][/tex]

• Multiply row 3 by 1/3.

[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]

• Eliminate the entry in the third column of the second row. Combine row 2 with row 3.

[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]

• Eliminate the entries in the second and third columns of the first row. Combine row 1 with row 2 and -1 (row 3).

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]

Then the solution to the system is

[tex]\boxed{x=9, y=-3, z=8}[/tex]

If you want to use G elimination and substitution, you'd stop at the step with the augmented matrix

[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]

The third row tells us that [tex]z=8[/tex]. Then in the second row,

[tex]y-z = -11 \implies y=-11 + 8 = -3[/tex]

and in the first row,

[tex]x-y+z=20 \implies x=20 + (-3) - 8 = 9[/tex]

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.