Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
In matrix form, the system is given by
[tex]\begin{bmatrix} -1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -20 \\ 29 \\ 29 \end{bmatrix}[/tex]
I'll use G-J elimination. Consider the augmented matrix
[tex]\left[ \begin{array}{ccc|c} -1 & 1 & -1 & -20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right][/tex]
• Multiply through row 1 by -1.
[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right][/tex]
• Eliminate the entries in the first column of the second and third rows. Combine -2 (row 1) with row 2, and -3 (row 1) with row 3.
[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 5 & -2 & -31 \end{array} \right][/tex]
• Eliminate the entry in the second column of the third row. Combine -5 (row 2) with row 3.
[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 3 & 24 \end{array} \right][/tex]
• Multiply row 3 by 1/3.
[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]
• Eliminate the entry in the third column of the second row. Combine row 2 with row 3.
[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]
• Eliminate the entries in the second and third columns of the first row. Combine row 1 with row 2 and -1 (row 3).
[tex]\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]
Then the solution to the system is
[tex]\boxed{x=9, y=-3, z=8}[/tex]
If you want to use G elimination and substitution, you'd stop at the step with the augmented matrix
[tex]\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right][/tex]
The third row tells us that [tex]z=8[/tex]. Then in the second row,
[tex]y-z = -11 \implies y=-11 + 8 = -3[/tex]
and in the first row,
[tex]x-y+z=20 \implies x=20 + (-3) - 8 = 9[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.